• 제목/요약/키워드: Out-of-plane Wave

검색결과 118건 처리시간 0.029초

적층내 탄성 유도초음파의 모드 특성에 관한 연구 (A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures)

  • 조윤호;이종명
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.211-216
    • /
    • 2008
  • 이 연구에서 다층구조물에서 각 모드에 대한 위상속도, 군속도, 감쇠 그리고 파형구조를 구하는 프로그램을 개발하였다. 판의 수와 재료 물성치를 변화시키면서 각 모드의 파형구조를 얻었다. 유체가 닿아 있는 구조물에서 유도파를 이용한 비파괴 검사의 성공여부는 에너지 손실을 최소화하는 모드선정의 최적화이다. 이 연구에서는 자유표면판재의 표면에서 정규화된 두께방향의 변위가 감쇠의 변화를 예측하기 위해서 사용되었으며 감쇠와 파형구조의 관계를 밝혔다. 이것은 유도파의 감쇠를 물이 닿아 있는 경우 복소수근을 찾는 수학적 어려움을 경감하면서 자유표면에서 두께방향 변위의 변화로부터 손쉽게 얻을 수 있다. 이 연구를 통하여 다층구조물에서 보다 민감하고 효율적인 비파괴 검사를 위한 유도파의 모드선정의 최적화 개념을 완성했다.

압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링 (Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures)

  • 김재은;김윤영
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.957-964
    • /
    • 2011
  • 본 연구에서는 압전 밴드 갭 구조물(포논 결정) 에 대한 체적 탄성파의 전파 특성을 주파수 및 모드 별로 파악하기 위한 유한 요소법의 적용 방안을 제안하였다. 이를 위해 체적 탄성 진행파의 면내 모드 뿐만 아니라 면외 모드를 포함하도록 3 차원 주기 경계 조건을 고려하였다. 특히, 체적 탄성파 모드 간의 비연성 특성을 전기 분극 방향에 따라 유도한 다음, 그 결과를 유한 요소 모델링에 반영하였다. 제안된 방법은 실제 시뮬레이션을 통해 다양한 형태의 압전 밴드 갭 구조물의 파동 특성 분석에 적용될 수 있는 일반적이고 효율적인 방법임을 확인하였다.

Reflection of plane waves from the boundary of a thermo-magneto-electroelastic solid half space

  • Singh, Baljeet;Singh, Aarti
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.143-159
    • /
    • 2021
  • The theory of generalized thermo-magneto-electroelasticity is employed to obtain the plane wave solutions in an unbounded, homogeneous and transversely isotropic medium. Reflection phenomena of plane waves is considered at a stress free and thermally insulated surface. For incidence of a plane wave, the expressions of reflection coefficients and energy ratios for reflected waves are derived. To explore the characteristics of reflection coefficients and energy ratios, a quantitative example is set up. The half-space of the thermo-magneto-electroelastic medium is assumed to be made out of lithium niobate. The dependence of reflection coefficients and energy ratios on the angle of incidence is illustrated graphically for different values of electric, magnetic and thermal parameters.

Application of Phase-Shifting Method in Speckle Interferomtery to Measurement of Micro-Scale Displacement

  • Baek, Tae-Hyun;Kim, Myung-Soo
    • 비파괴검사학회지
    • /
    • 제26권3호
    • /
    • pp.162-168
    • /
    • 2006
  • Speckle interferometry with phase-shifting method has been applied to measurement of micro-scale displacement through optical signal processing. Four-step phase-shifting method by PZT is used to measure out-of-plane displacement in spot-welded cantilever and results of optical experiments are comparable to those of FEM. Phase-shifting method using Fourier transform by PZT is applied to measurement of in-plane displacement on rectangular steel plate with a circular hole. The results of optical experiment agree well with theoretical calculation. New phase-shifting method in speckle interferometry has been implemented with a quarter wave plate. In-plane displacement of specimen is measured by the new phase-shifting method. Results of optical experiment show that the quarter wave plate can be used for phase-shifting method that is cheap and easy to use in speckle interferometry.

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • 제14권2호
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Effects of d-wave symmetry on the critical current of YBCO step-edge Josephson junction

  • Hwang, Yun-Seok;Moon, Sunk-Yung;Ahn, Jong-Rok;Lee, Soon-Gul;Kim, Jin-Tae
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.99-102
    • /
    • 2000
  • We have studied the effects of d-wave symmetry on the critical current of YBa$_2$Cu$_3$O$_7$ step-edge Josephson junctions. The critical current along various misorientation angle was measured and analyzed with the concept of grain-boundary junctions with d-wave symmetry. Experimental results of c-oriented YBCO step-edge junctions with various in-plane misorientation angles were qualitatively in good agreement with the theory. The out-of-plane misorientation angle is usually formed between two grains with the c axes perpendicular to each other and is normally not controllable.

  • PDF

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • 제8권2호
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.