• Title/Summary/Keyword: Out type diaphragm

Search Result 29, Processing Time 0.023 seconds

Performance and Flow Characteristics Analyses of Diaphragm Seals for Large Power-Generation Steam Turbines (대형 발전용 스팀터빈 다이아프램 시일의 성능 및 유동특성 해석)

  • Park, Jun-Young;Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2612-2615
    • /
    • 2008
  • Diaphragm seals have great effects on the performance of large power-generation steam turbines. Hence, it is important to decrease the leakage flow through the diaphragm seals and understand the flow characteristics within the diaphragm seals. In this study, numerical analysis was carried-out with the seals of large one-body type diaphragms developed by a domestic company. CFX, which is a commercial CFD code, was used to analyze the performance and flow characteristics of the diaphragm seals for three difference clearance cases. The results of numerical analysis show variations in the performance and flow characteristics according to the changes of labyrinth seal clearance.

  • PDF

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF

Finite Element Analysis of Diaphragm Type Air Springs considering the Variation of Fiber Angles (섬유의 적층각을 고려한 다이아프램형 공기 스프링의 유한요소 해석)

  • Lee, Hyeoun-Guk;Kim, Se-Ho;Heo, Hun;Kim, Jin-Yeong;Chung, Su-Gyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.29-33
    • /
    • 1999
  • this paper concerned with the stress analysis of a diaphragm-type air spring which consists of rubber linings nylon reinforced rubber composite. The analysis is carried out with a finite element method developed to consider the orthotropic properties geometric non-linearity and contact between an air bag and a bead ring The material properties are evaluated with the Halpio-Tsai equations and the rule of mixture. The analysis results demonstrate the variation of the outer diameter the fold height and the vertical force with different models to the design a proper diaphragm air springs.

  • PDF

Study on Electro-Mechanical Characteristics of Array Type Capacitive Pressure Sensors with Stainless Steel Diaphragm and Substrate (스테인리스 강 박막 및 기판을 이용한 배열형 정전용량 압력센서의 전기 기계적 특성연구)

  • Lee, Heung-Shik;Chang, Sung-Pil;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1369-1375
    • /
    • 2006
  • In this work, mechanical characteristics of stainless steel diaphragm have been studied as a potential robust substrate and a diaphragm material for micromachined devices. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on a stainless steel diaphragm have been designed, fabricated and characterized. The fabrication process for stainless steel micromachined devices keeps the membrane and substrate being at the environment of 8.65MPa pressure and $175^{\circ}C$ for a half hour and then subsequently cooled to $25^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated stainless steel film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the device fabricated using these technologies is 9.03 ppm $kPa^{-1}$ with a net capacitance change of 0.14 pF over a range 0$\sim$180 kPa.

Characteristics and Applicability of CWS(Continuous Wall System)II Method (CWS(Continuous Wall System)II 공법의 특성 및 적용성)

  • Lim, In-sig;Lee, Jeong-bae;Kim, Jae-dong;Lee, Jai-ho;Woo, Sung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.43-47
    • /
    • 2008
  • CWSII method was developed to overcome the problems of frequent occurrence in the application of existing downward construction methods, especially in the case of using slurry wall instead of SCW or CIP as a retaining wall. By the improvements in connecting steel beams with the wall, CWSII method is able to ensure the settlement of a steel beam and the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. As the desired results, CWS method can be applied as a practical downward construction method regardless of the type of retaining wall. In this paper, besides the concept and features of CWSII method, it can be seen that the method can provide reliable and economical performances by comparing with existing methods.

  • PDF

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding (외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동)

  • Seo, Seong Yeon;Jung, Jin Ahn;Choi, Sung Mo;Kim, Sung Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.459-467
    • /
    • 2005
  • This study focuses on the development of a new method of H-shaped beam-to-square column connection with an outer diaphragm and a field welding. The specific type of beam-to-column connection with an external stiffener, using field welding, is proposed. The structural behavior of this connection was examined experimentally. Two loading type tests were conducted under the experimental parameters given as details. First described was the symmetrical loading test, which supported both ends or a beam simply and applied a load from the column to the pend (What does this mean?) to investigate a fundamental characteristic of this connection. Further described was the anti-symmetrical loading test, which carried out simple support of the column'stop end and the column base, and applied a load from both ends of a beam to investigate the structural performance of this connection. From the results, it is clear that the external- stiffener-type connection proposed in this paper is the reliable connection method.

A Numerical Study on Flow Analysis of a Valveless Bidirectional Piezoelectric Micropump (밸브 없는 양방향 피에조 마이크로펌프의 유동해석)

  • Lee, Sang-Hyuk;Hur, Janet;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2008
  • A numerical simulation on the flow field of a valveless bidirectional piezoelectric micropump has been performed. In this type of micropump, the oscillation of the piezoelectric diaphragm generates the blowing and suction flow through the oblique channel from the pumping chamber. The angle between the oblique and main channel causes the variation of flow distribution through upstream and downstream channels in suction and blowing modes. In the suction flow mode, the working fluid flows from both the upstream and downstream of the main channel to the pumping chamber through the oblique channel. However, in the blowing flow mode, the fluid pushed out of the pumping chamber flows more toward the downstream of the main channel due to the inertia of the fluid. In the present study, the effects of geometries such as the angle of oblique channel and the shape of main channel on the flow rate of the up/downstream were investigated. The flow rate obtained from the pump and the energy required to the pump were also analyzed for various displacements and frequencies of the oscillation of the diaphragm.

A Numerical Study on the Semi-Rigid Behavior of Steel Tubular Column to H Beam Connection with Exterior Square-Plate Diaphragms (직각판형 외다이아프램 각형강관기둥-H형강보 접합부의 방강접거동에 관한 해석적연구)

  • Chae, Yong-Soo;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.289-299
    • /
    • 2001
  • The purpose of this study was to analyze the characteristics of semi-igid behavior of the steel tubular column to H-beam connection reinforced with exterior square-plate diaphragms and to check the main parameters that affect this behavior. Steel tube connections without interior diaphragm and/or complicated exterior diaphragm show the considerable flexibility due to out of-plane deformation of tube flange. For the exact analysis well-reflected the effect of this flexibility on the overall frame performance. it need to find out the moment-rotation curve function that well trace the result of experiment in the whole region and the function should be simply transformed into an adequate form for the nonlinear analysis program. After collecting several test data same to the connection type considered. we carried out FEM analysis using ANSYS for the assumed beam-to-column connection developed from the simple tension test and the results are compared with experimental values. Based on the parametric study. we proposed the moment-relation curve function and performed the multiple-regression analysis procedure for three parameters consisting of this function with the main geometric parameter of this connection type.

  • PDF

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.