• Title/Summary/Keyword: Out of distribution

Search Result 8,341, Processing Time 0.046 seconds

Numerical Analysis about the Time Characteristics of Space Charge Distribution and Measured Current in LDPE (LDPE에서 공간전하분포와 측정전류의 시간특성에 대한 수치해석)

  • Hwang, Bo-Seung;Park, Dae-Hui;Nam, Seok-Hyeon;Gwon, Yun-Hyeok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.502-509
    • /
    • 2000
  • In this paper in order to evaluat quantitavely the formation mechanism of space charge and its effects on the conduction characteristics in LDPE we have carried out the numerical analysis on the basis of experimental results of space charge distribution cathode field and current with time which had been simultaneously measured at applied field of 50kV/mm and room temperature. As the models for numerical analysis we employ the Richarson-Schottky theory for charge injection from electrode into LDPE and the band-tail conduction at crystalline regions and the hopping conduction by traps which mainly exist at the interface regions of crystalline-amorphous region for charge transport in LDPE. Futhermore in order to investigate the influence of physical parameters on the time characteristcs of space charge distribution and measured current we have changed the values of trap density activation energies for charge injection and transport and have analyzed their effects.

  • PDF

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(I) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(I) -돌출열원이 없는 경우의 유동특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) The development of the free jets issued from downstream jets was hindered by the crossflow formed due to jets. Consequently, the free jet was developed into the channel flow without any evident symptom of impingement jet flow characteristics 2) The crossflow induced the pressure gradient along the cross section of jet exits and the value of the pressure gradient increased as going downstream. The crossflow generated also the turbulent kinetic energy as it collied with the downstream jets. 3) The skin friction coefficient along the impingement plate was affected more by the distribution of mass flow rate at jet exits rather than by the Reynolds number. The skin friction coefficient was inversely proportional to the square root of the Reynolds number, regardless of flow regime when a fully developed flow was formed in the jet flow region. 4) The distribution of the skin friction coefficient along the impingement plate was found to be controlled by adjusting the distribution of mass flow rate at jet exits.

  • PDF

GRAVITATIONAL MICRO-LENSING EFFECTS AND ASTROPHYSICAL APPLICATIONS

  • Chang, Kyong-Ae
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 1992
  • The most favourable possibilities to observe the phenomena of gravitational lensing are the high amplification events and the time delay between the images. These effects provide us the information to determine the Hubble parameter and the matter distribution in the universe. The image properties due to micro-lensing also is of an importance to find out the size and the structure of the source.

  • PDF

Macroscopic and microscopic mass transfer in silicon czochralski method

  • Kakimoto, Koichi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.381-383
    • /
    • 1999
  • First topic of this paper aims to clarify how oxygen and heat transfer in silicon melt under cusp-shaped magnetic fields. We obtained asymmetric temperature distribution by using time dependent and three-dimensional calculation. Second topic is study on molecular dynamics simulation, which was carried out to estimate diffusion constants of oxygen in silicon melt.

  • PDF

WEAK CONVERGENCE OF VARIOUS MODELS TO FRACTIONAL BROWNIAN MOTION

  • Kim, Joo-Mok
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2007
  • We consider arrival process and ON/OFF source model which allows for long packet trains and long inter-train distances. We prove the weak convergence of theses processes to Fractional Brownian motion. Finally, we figure out the coefficients of $B_H(t)$ and time $t$ when ON/OFF periods have the Pareto distribution.

  • PDF

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

Growth Characteristics of Pinus thunbergii Parl. after Replanting in Reclaimed from the Sea( I ) - On the Spatial Distribution of Fine Root Phytomass - (바다 매립지 곰솔 이식후 생장특성(I) - 세근 공간적 분포를 중심으로 -)

  • 김도균;곽영세
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.77-84
    • /
    • 2004
  • This study was carried out to analyze the vertical and horizontal distribution of fine root biomass of Pinus thunbergii transplanted in reclaimed land from the sea near Gwangyang Bay. The fine-root biomass according to 6 planting ground types were as follows: 98.5 g DM/$m^2$ for P2, 51.1 g DM/$m^2$ for P6, 47.8 g DM$m^2$ for P5, 44.6 g DM/$m^2$ for P3, 38.2 g DM/$m^2$ for P4, 31.8 g DM/$m^2$ for Pl, respectively. The vertical distribution of fine root biomass decreased at descending soil depths of the 6 mounding types. Fine root biomass was 31∼55% in the topsoil of 20cm depth. Fine root biomass that were related to the Spatial distance from the nearest tree were unevenly distributed horizontally in 6 stands. distribution patterns of fine root biomass were closely related to soil hardness and alkalic cation (Ca++, Mg++, Na+, K+) concentrations. Therefore, in order to have good condition for the growth of landscaping plants, we suggest that there is a need for the construction of planting grounds as well as a need for soil improvement in bad soil environments.

Modeling and Simulation using Simulink and SimPowerSystem of optimized HTS FCL location in a Smart Grid having a Wind Turbine connected with the grid

  • Khan, Umer-Amir;Lee, Sang-Hwa;Seong, Jae-Kyu;Lee, Bang-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.17-20
    • /
    • 2010
  • A considerable amount of research material discussing designs and properties of High Temperature Superconducting Fault Current Limiter (HTS FCL) is available. However, a shortage of research concerning positioning of HTS FCL in power grid is felt. In this paper a feasibility study of HTS FCL positioning in Smart Grid through simulation analysis is carried out. A complete power network (including generation, transmission and distribution) is modeled in Simulink / SimPowerSystems. A generalized HTS FCL is also designed by integrating Simulink and SimPowerSystem blocks. The distribution network of the model has a wind turbine attached to it forming a micro grid. Three phase fault have been simulated along with placing FCL models at key points of the distribution grid. It is observed that distribution grid, having distributed generation sources attached to it, must not have a single FCL located at the substation level. Optimized HTS FCL location regarding the best fault current contribution from wind turbine has been determined through simulation analysis.

A Study on the Optimal Position of Lightning Arrester on Joint Operation of Neutral Wire and Overhead Grounding Wire through Lightning Surge Analysis in Combined Distribution System (혼합배전계통에서 뇌과전압 해석을 통한 중성선과 가공지선 혼용 운전시 적정 피뢰기 위치에 관한 연구)

  • Jeong, Seok-San;Jang, Hwa-Youn;An, Chun-Yong;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.535-536
    • /
    • 2011
  • This paper studies the validity about a joint operation of neutral wire and overhead grounding wire in combined distribution systems. The overhead grounding wire and neutral wire are currently installed separately and grounded by common. However there is no any ineffectiveness or electrical problem in case of the proposed system, such system can be operated at real distribution system. Therefore this paper describes the suitability of a joint operation through lightning surge analysis on combined distribution systems and analyzes the optimal position of lightning arrester on joint operation of neutral wire and overhead grounding wire. Lightning surge analysis is carried out by EMTP/ATPDraw to obtain the overvoltage of overhead line and underground cable in various conditions such as location and current types of lightning stroke. Over voltage gained by the analysis show that the insulation strength of the joint operation case is not stable compare with the current operation case.

  • PDF

Influences of Detention Time, Particle Size Distribution, and Filter Medium on Waterworks Sludges Dewatering (체류시간, 입도분포 및 여재가 정수 슬러지의 탈수에 미치는 영향)

  • Kim, Kwang-Soo;Lee, Jae-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.121-128
    • /
    • 2009
  • Objectives of this study were to investigate influencing factors of detention time, particle size distribution, and filter medium characteristics for waterworks sludge dewatering. The stepped pressure filtration was carried out with lab scale apparatus and the filter press pilot test for dewatering was conducted at the water treatment plant. Effects of filter medium and polymer dose were examined through observing water content and dewatering velocity and cyclic dewatering rate with filter press pilot test. Relationships among detention time, particle size distribution and filtration resistance were analyzed. Prolongation of sludge detention time was found to cause blinding phenomenon in cake and filter medium and to decrease dewatering process efficiency. The average specific resistance increased according to detention time. In pilot test of dewatering for thickened sludge with Nylon Multi-NY840D and Nylon Mono-100% filter media, dewatering velocities were 0.92 and $0.93kg\;DS/m^2{\cdot}hr$ according to 0.1% polymer dose of dried solids weight base. And cyclic dewatering rates were 2.45 and $2.50kg\;DS/m^2{\cdot}cycle$ cycle for the Nylon Multi-NY840D and Nylon Mono-100% media. Dewatering velocity of polymer dosed sludge was observed to be higher than that of non-polymer sludge.