• Title/Summary/Keyword: Otsu Thresholding

Search Result 35, Processing Time 0.033 seconds

Study on vision-based object recognition to improve performance of industrial manipulator (산업용 매니퓰레이터의 작업 성능 향상을 위한 영상 기반 물체 인식에 관한 연구)

  • Park, In-Cheol;Park, Jong-Ho;Ryu, Ji-Hyoung;Kim, Hyoung-Ju;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.358-365
    • /
    • 2017
  • In this paper, we propose an object recognition method using image information to improve the efficiency of visual servoingfor industrial manipulators in industry. This is an image-processing method for real-time responses to an abnormal situation or to external environment change in a work object by utilizing camera-image information of an industrial manipulator. The object recognition method proposed in this paper uses the Otsu method, a thresholding technique based on separation of the V channel containing color information and the S channel, in which it is easy to separate the background from the HSV channel in order to improve the recognition rate of the existing Harris Corner algorithm. Through this study, when the work object is not placed in the correct position due to external factors or from being twisted,the position is calculated and provided to the industrial manipulator.

A study on Practical Defect Detector using Efficient Thresholding Method

  • Pak, Myeongsuk;Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1509-1511
    • /
    • 2015
  • Defect detection is one of the most challenging problems in industrial quality control. In this study we developed a vision-based defect detection system for wafer production. To achieve high-accuracy detection, Otsu method was improved so that it can handle both unimodal and bimodal distributions. After thresholding, detected defect regions in the wafer are classified and grouped into user-defined defect categories. The experimental result has proved the efficiency of our system.

Fully Automated Generation of Cloud-free Imagery Using Landsat-8 (Landsat-8을 이용한 자동화된 구름 제거 영상 생성)

  • Kim, Byeong Hee;Kim, Yong;Han, You Kyung;Choi, Won Seok;Kim, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Landsat is one of the popular satellites for observing land surface that is used in various areas including monitoring, detecting and classifying changes in land surface. However, shades, which cloud itself and its shadow, interrupted often clear observation and analysis of ground surface. For this reason, the process of removing shades and restoring original ground surfaces are critical for geospatial users. This study is planned to recommend a methodology for more accurate and clear images of Landsat-8 sensor, which provided two additional bands of costal/aerosol and cirrus. In fact, those bands are known as functioned effectively in detecting and restoring shades. Otsu's thresholding technique to detect clouds, we replaced those detective shades by using experimental and reference images. In accurate assessment, the overall accuracy and kappa coefficients were about 85% and 0.7128, respectively. This indicates that the proposed technique is effective for recovering the original land surface.

An Adaptive Multi-Level Thresholding and Dynamic Matching Unit Selection for IC Package Marking Inspection (IC 패키지 마킹검사를 위한 적응적 다단계 이진화와 정합단위의 동적 선택)

  • Kim, Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.245-254
    • /
    • 2002
  • IC package marking inspection system using machine vision locates and identifies the target elements from input image, and decides the quality of marking by comparing the extracted target elements with the standard patterns. This paper proposes an adaptive multi-level thresholding (AMLT) method which is suitable for a series of operations such as locating the target IC package, extracting the characters, and detecting the Pinl dimple. It also proposes a dynamic matching unit selection (DMUS) method which is robust to noises as well as effective to catch out the local marking errors. The main idea of the AMLT method is to restrict the inputs of Otsu's thresholding algorithm within a specified area and a partial range of gray values. Doing so, it can adapt to the specific domain. The DMUS method dynamically selects the matching unit according to the result of character extraction and layout analysis. Therefore, in spite of the various erroneous situation occurred in the process of character extraction and layout analysis, it can select minimal matching unit in any environment. In an experiment with 280 IC package images of eight types, the correct extracting rate of IC package and Pinl dimple was 100% and the correct decision rate of marking quality was 98.8%. This result shows that the proposed methods are effective to IC package marking inspection.

A Multi-Layer Perceptron for Color Index based Vegetation Segmentation (색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망)

  • Lee, Moon-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.

Lane Detection Algorithm for Night-time Digital Image Based on Distribution Feature of Boundary Pixels

  • You, Feng;Zhang, Ronghui;Zhong, Lingshu;Wang, Haiwei;Xu, Jianmin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.188-199
    • /
    • 2013
  • This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.

Automated Vessels Detection on Infant Retinal Images

  • Sukkaew, Lassada;Uyyanonvara, Bunyarit;Barman, Sarah A;Jareanjit, Jaruwat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.321-325
    • /
    • 2004
  • Retinopathy of Prematurity (ROP) is a common retinal neovascular disorder of premature infants. It can be characterized by inappropriate and disorganized vessel. This paper present a method for blood vessel detection on infant retinal images. The algorithm is designed to detect the retinal vessels. The proposed method applies a Lapalacian of Gaussian as a step-edge detector based on the second-order directional derivative to identify locations of the edge of vessels with zero crossings. The procedure allows parameters computation in a fixed number of operations independent of kernel size. This method is composed of four steps : grayscale conversion, edge detection based on LOG, noise removal by adaptive Wiener filter & median filter, and Otsu's global thresholding. The algorithm has been tested on twenty infant retinal images. In cooperation with the Digital Imaging Research Centre, Kingston University, London and Department of Opthalmology, Imperial College London who supplied all the images used in this project. The algorithm has done well to detect small thin vessels, which are of interest in clinical practice.

  • PDF

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry

  • Aliyu, Ibrahim;Gana, Kolo Jonathan;Musa, Aibinu Abiodun;Adegboye, Mutiu Adesina;Lim, Chang Gyoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4866-4888
    • /
    • 2020
  • One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.

Object Segmentation for Detection of Moths in the Pheromone Trap Images (페로몬 트랩 영상에서 해충 검출을 위한 객체 분할)

  • Kim, Tae-Woo;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.157-163
    • /
    • 2017
  • The object segmentation approach has the merit of reducing the processing cost required to detect moths of interest, because it applies a moth detection algorithm to the segmented objects after segmenting the objects individually in the moth image. In this paper, an object segmentation method for moth detection in pheromone trap images is proposed. Our method consists of preprocessing, thresholding, morphological filtering, and object labeling processes. Thresholding in the process is a critical step significantly influencing the performance of object segmentation. The proposed method can threshold very elaborately by reflecting the local properties of the moth images. We performed thresholding using global and local versions of Ostu's method and, used the proposed method for the moth images of Carposina sasakii acquired on a pheromone trap placed in an orchard. It was demonstrated that the proposed method could reflect the properties of light and background on the moth images. Also, we performed object segmentation and moth classification for Carposina sasakii images, where the latter process used an SVM classifier with training and classification steps. In the experiments, the proposed method performed the detection of Carposina sasakii for 10 moth images and achieved an average detection rate of 95% of them. Therefore, it was shown that the proposed technique is an effective monitoring method of Carposina sasakii in an orchard.