• 제목/요약/키워드: Otsu Method

검색결과 113건 처리시간 0.033초

Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법 (A Multi-thresholding Approach Improved with Otsu's Method)

  • 이철학;김상운
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.29-37
    • /
    • 2006
  • 스레쉬홀딩(thresholding)은 영상 화소의 군집이나 강도를 이용하여 영상을 분할하는 기본 기술이다. Otsu의 스레쉬홀딩 방법에서는 정규화 된 히스토그램을 이산 밀도함수로 보아 화소의 클래스 간 분산을 최대화시키는 판별식을 이용한다. 그러나 Otsu의 방법에서는 여러 객체로 이루어진 영상에서 최적의 스레쉬홀드를 찾기 위하여 그레이레벨 전 구간에 대해 모든 가능한 분산 값을 반복적으로 계산해 보아야 하기 때문에 계산 시간이 길게 걸리는 문제가 있다. 본 논문에서는 Otsu의 방법을 개선하여 간단하지만 고속으로 멀티-레벨의 스레쉬홀드 값을 구할 수 있는 방법을 제안한다. 전체 그레이 구간 영역에 대하여 Otsu의 방법을 적용시키기 보다는 먼저 그레이 영역을 작은 부분-구간으로 나눈 다음 Otsu의 방법을 적용시키는 처리를 반복하여 원하는 개수의 스레쉬홀드를 구하는 방법이다. 본 제안 방법에서는 맨 처음 대상 영상의 그레이 구간을 2부류로 나눈다. 이 때, 분할을 위한 스레쉬홀드는 전 구간을 대상으로 Otsu의 방법을 적용하여 구한다. 그 다음에는 전체 구간이 아닌 분할된 부분-구간을 대상으로 Otsu의 방법을 적용하여 두 부류를 4부류로 나눈다. 이와 같은 처리를 원하는 개수의 스레쉬홀드를 얻을 때 까지 반복한다. 세 종류 벤취마크 영상과 50개 얼굴영상에 대해 실험한 결과, 제안 방법은 대상 영상을 특성에 맞게 고속으로 잘 분할하였으며, 패턴 매칭이나 얼굴인식에 이용될 수 있는 가능성을 확인하였다.

변형 Otsu 이진화와 Hu 모멘트에 기반한 얼굴 인식에 관한 연구 (A Study on Face Recognition Based on Modified Otsu's Binarization and Hu Moment)

  • 이형지;정재호
    • 한국통신학회논문지
    • /
    • 제28권11C호
    • /
    • pp.1140-1151
    • /
    • 2003
  • 본 논문에서는 변형 Otsu 이진화 방법과 Hu 모멘트를 기반으로 밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식 방법을 제안한다. 제안하는 변형 Otsu 이진화 방법은 기존의 Otsu 이진화 방법으로부터 또 다른 문턱치 값을 결정하고 이로부터 얻어진 이진 얼굴 영상 2개를 사용함으로써 이진 영상 하나보다 고차원의 특징벡터를 추출할 수 있고, 기존의 Otsu 이진화 방법과 마찬가지로 밝기 및 명암도 변화에 강인한 속성을 가지고 있다. 특징 값으로는 Hu 모멘트를 사용함으로써 크기, 회전, 위치 변화에 강인한 특성을 추가로 가지고 있다 기존의 주요 성분 분석(Principal Component Analysis, PCA) 방법과 제안한 방법을 비교 실험한 결과, 위에서 언급한 5가지 다양한 환경 변화에 대하여 PCA 방법의 평균 인식률은 olivetti Research Laboratory (ORL) 데이터베이스와 AR 데이터베이스에 대해서 각각 68.4%와 51.2%이고, 제안한 방법의 평균 인식률은 각각 93.2%와 81.4%로서 제안한 방법의 인식 성능이 우수함을 확인하였다.

소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구 (A Study on Image Segmentation Method Based on a Histogram for Small Target Detection)

  • 양동원;강석종;윤주홍
    • 한국멀티미디어학회논문지
    • /
    • 제15권11호
    • /
    • pp.1305-1318
    • /
    • 2012
  • 영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.

Otsu 방법을 이용한 음성 종결점 탐색 알고리즘 (Otsu's method for speech endpoint detection)

  • 고유;장한;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.40-42
    • /
    • 2009
  • This paper presents an algorithm, which is based on Otsu's method, for accurate and robust endpoint detection for speech recognition under noisy environments. The features are extracted in time domain, and then an optimal threshold is selected by minimizing the discriminant criterion, so as to maximize the separability of the speech part and environment part. The simulation results show that the method play a good performance in detection accuracy.

  • PDF

암모니아산화세균의 계수를 위한 영상분리기법 (A Segmentation Method for Counting Ammonia-oxidizing Bacteria)

  • 김학경;이선희;이명숙;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.287-287
    • /
    • 2000
  • As a method to control the bacteria number in adequate level, a real time control system based on microscope image processing measurement for the bacteria is adopted. For the experiment, Ammonia-oxidizing bacteria such as Acinetobacter sp. are used. This paper proposed hybrid method combined watershed algorithm with adaptive automatic thresholding method to enhance segmentation efficiency of overlapped image. Experiments was done to show the effectiveness of the proposed method compared to traditional Otsu's method, Otsu's method with adaptive automatic thresholding method and human visual method.

  • PDF

근사 임계값 추정을 통한 Otsu 알고리즘의 연산량 개선 (A Computational Improvement of Otsu's Algorithm by Estimating Approximate Threshold)

  • 이영우;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.163-169
    • /
    • 2017
  • There are various algorithms evaluating a threshold for image segmentation. Among them, Otsu's algorithm sets a threshold based on the histogram. It finds the between-class variance for all over gray levels and then sets the largest one as Otsu's optimal threshold, so we can see that Otsu's algorithm requires a lot of the computation. In this paper, we improved the amount of computational needs by using estimated Otsu's threshold rather than computing for all the threshold candidates. The proposed algorithm is compared with the original one in computation amount and accuracy. we confirm that the proposed algorithm is about 29 times faster than conventional method on single processor and about 4 times faster than on parallel processing architecture machine.

Fast Scene Change Detection Algorithm

  • Khvan, Dmitriy;Ng, Teck Sheng;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.259-262
    • /
    • 2012
  • In this paper, we propose a new fast algorithm for effective scene change detection. The proposed algorithm exploits Otsu threshold matching technique, which was proposed earlier. In this method, the current and the reference frames are divided into square blocks of particular size. After doing so, the pixel histogram of each block is generated. According to Otsu method, every histogram distribution is assumed to be bimodal, i.e. pixel distribution can be divided into two groups, based on within-group variance value. The pixel value that minimizes the within-group variance is said to be Otsu threshold. After Otsu threshold is found, the same procedure is performed at the reference frame. If the difference between Otsu threshold of a block in the current frame and co-located block in the reference frame is larger than predefined threshold, then a scene change between those two blocks is detected.

  • PDF

영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할 (Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation)

  • 노석범;안태천;백용선;김용수
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.368-374
    • /
    • 2010
  • 영상 분할 (Image Segmentation)은 패턴 인식, 환경 인식, 문서 분석을 위한 영상 처리 과정에서 가장 기본적인 단계이다. 영상 분할 방법들 중 Otsu의 영상의 정규화된 히스토그램의 분포 정보를 이용하여 클래스 간의 분산을 최대화 시키는 임계치값을 결정하는 자동 임계치값 선정방법이 가장 잘 알려진 방법이다. Otsu의 방법은 영상의 전 영역에 대한 히스토그램을 분석함으로써 영상의 부분적인 특성을 반영하여 임계치값을 결정하기는 어렵다. 본 논문에서는 이 어려움 해소하기 위하여 Context Fuzzy c-Means 알고리즘을 이용하여 영상을 여러 개의 부분 영역으로 나누고, 정의된 부 영역에 영상 분할 기법을 적용함으로써 부 영역들에 적합한 여러 개의 임계치값을 계산함으로써 영상 분할 성능을 개선하고자 하였다.

적외선 영상 표적추적 성능 개선을 위한 적응적인 자동문턱치 산출 기법 연구 (Adaptive Automatic Thresholding in Infrared Image Target Tracking)

  • 김태한;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.579-586
    • /
    • 2011
  • It is very critical for image processing of IIR (Imaging Infrared) seekers to achieve improved guidance performance for missile systems to determine appropriate thresholds in various environments. In this paper, we propose automatic threshold determination methods for proper thresholds to extract definite target signals in an EOCM (Electro-Optical Countermeasures) environment with low SNR (Signal-to-Noise Ratios). In particular, thresholds are found to be too low to extract target signals if one uses the Otsu method so that we suggest a Shifted Otsu method to solve this problem. Also we improve extracting target signal by changing Shifted Otsu thresholds according to the TBR (Target to Background Ratio). The suggested method is tested for real IIR images and the results are compared with the Otsu method. The HPDAF (Highest Probabilistic Data Association Filter) which selects the target originated measurements by taking into account of both signal intensity and statistical distance information is applied in this study.

Saliency Map을 이용한 최적 임계값 기반의 객체 추출 (Obtaining Object by Using Optimal Threshold for Saliency Map Thresholding)

  • ;김도연;박혁로
    • 한국콘텐츠학회논문지
    • /
    • 제11권6호
    • /
    • pp.18-25
    • /
    • 2011
  • 이미지로부터 중요 객체를 추출하는 것은 추적, 분할, 적응적 압축, 내용기반 검색과 같은 멀티미디어 처리에 있어서 매우 중요한 부분이며, 현재 이에 관한 많은 연구가 진행 되고 있다. 중요 객체 추출을 위한 방법으로 Saliency Map을 이용한 방법이 있다. 이 방법에서는 일반적으로 이진화된 Saliency Map을 이용하여 어떤 화소가 중요 객체 내부인가 아닌가를 표시한다. 따라서 이 방법은 이진화를 위한 임계값의 선택이 성능에 매우 중요한 영향을 끼친다. 기존 연구에서는 일반적으로 휴리스틱 방법을 이용하여 임계값을 결정하거나 매개변수로 임계값을 조정하는 방법이 사용되었다. 그러나 하나의 임계값 적용은 이미지 안의 다수의 객체가 포함되어 있는 경우 적합하지 않다. 본 논문에서는 이러한 단점을 개선할 수 있는 Otsu 임계값을 이용한 전역적인 최적 임계값을 사용하는 방법을 제안한다. 제안하는 Otsu 임계화 방법은 단일-계층에 적용할 수 있는 Otsu 방법과 이를 확장하여 다중-계층에도 적용할 수 있는 Otsu 방법이다. 제안한 방법을 기존의 Saliency Map 모델에 적용한 결과 성능이 개선되었음을 확인하였다.