• Title/Summary/Keyword: Osteosarcoma cell line

Search Result 24, Processing Time 0.025 seconds

Down-regulation of Long Non-coding RNA TUG1 Inhibits Osteosarcoma Cell Proliferation and Promotes Apoptosis

  • Zhang, Qiang;Geng, Pei-Liang;Yin, Pei;Wang, Xiao-Lin;Jia, Jin-Peng;Yao, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2311-2315
    • /
    • 2013
  • Objective: To investigate the expression level of TUG1 and one of its transcript variants (n377360) in osteosarcoma cells and assess the role of TUG1 in proliferation and apoptosis in the U2OS cell line. Methods: TUG1 and n377360 expression levels in patients with osteosarcomas and the U2OS human osteosarcoma cell line were evaluated using real-time quantitative PCR. U2OS cells were transected with TUG1 and n377360 siRNA or non-targeting siRNA. MTS was performed to assess the cell proliferation and flow cytometry was applied to analyze apoptosis. Results: We found significantly higher TUG1 and n377360 expression levels in osteosarcoma tissues compared with matched non-tumorous tissues. In line with this, suppression of TUG1 and n377360 expression by siRNA significantly impaired the cell proliferation potential of osteosarcoma cells. Furthermore, inhibition of TUG1 expression significantly promoted osteosarcoma cell apoptosis. Conclusions: The overexpression of TUG1 and n377360 in osteosarcoma specimens and the functional role of TUG1 and n377360 regarding cell proliferation and apoptosis in an osteosarcoma cell line provided evidence that the use of TUG1 or n377360 may be a viable but an as yet unexplored therapeutic strategy in tumors that over express these factors.

Roles of microRNA-206 in Osteosarcoma Pathogenesis and Progression

  • Bao, Yun-Ping;Yi, Yang;Peng, Li-Lin;Fang, Jing;Liu, Ke-Bin;Li, Wu-Zhou;Luo, Hua-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3751-3755
    • /
    • 2013
  • Backgroud and Aims: MicroRNA-206 has proven to be down-regulated in many human malignancies in correlation with tumour progression. Our study aimed to characterize miR-206 contributions to initiation and malignant progression of human osteosarcoma. Methods: MiR-206 expression was detected in human osteosarcoma cell 1ine MG63, human normal osteoblastic cell line hFOB 1.19, and paired osteosarcoma and normal adjacent tissues from 65 patients using quantitative RT-PCR. Relationships of miR-206 levels to clinicopathological characteristics were also investigated. Moreover, miR-206 mimics and negative control siRNA were transfected into MG63 cells to observe effects on cell viability, apoptosis, invasion and migration. Results: We found that miR-206 was down-regulated in the osteosarcoma cell line MG63 and primary tumor samples, and decreased miR-206 expression was significantly associated with advanced clinical stage, T classification, metastasis and poor histological differentiation. Additionally, transfection of miR-206 mimics could reduce MG-63 cell viability, promote cell apoptosis, and inhibit cell invasion and migration. Conclusions: These findings indicate that miR-206 may have a key role in osteosarcoma pathogenesis and development. It could serve as a useful biomarker for prediction of osteosarcoma progression, and provide a potential target for gene therapy.

The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo

  • Jiang, Wei;Huang, Yong;Wang, Jing-Peng;Yu, Xiao-Yun;Zhang, Lin-Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4615-4619
    • /
    • 2013
  • Background: Artesunate, extracted from Artemisia annua, has been proven to have anti-cancer potential. Allicin, diallyl thiosulfinate, the main biologically active compound derived from garlic, is also of interest in cancer treatment research. This object of this report was to document synergistic effects of artesunate combined with allicin on osteosarcoma cell lines in vitro and in vivo. Methods: After treatment with artesunate and allicin at various concentrations, the viability of osteosarcoma cells was analyzed by MTT method, with assessment of invasion and motility, colony formation and apoptosis. Western Blotting was performed to determine the expression of caspase-3/9, and activity was also detected after drug treatment. Moreover, in a nude mouse model established with orthotopic xenograft tumors, tumor weight and volume were monitored after drug administration via the intraperitoneal (i.p.) route. Results: The viability of osteosarcoma cells in the combination group was significantly decreased in a concentration and time dependent manner; moreover, invasion, motility and colony formation ability were significantly suppressed and the apoptotic rate was significantly increased through caspase-3/9 expression and activity enhancement in the combination group. Furthermore, suppression of tumor growth was evident in vivo. Conclusion: Our results indicated that artesunate and allicin in combination exert synergistic effects on osteosarcoma cell proliferation and apoptosis.

Chloroquine and Valproic Acid Combined Treatment in Vitro has Enhanced Cytotoxicity in an Osteosarcoma Cell Line

  • Wang, Chuan-Kun;Yu, Xi-Dong;Li, Qiang;Xie, Gang;Teng, Yue
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4651-4654
    • /
    • 2013
  • Choroquine (CQ) and valproic acid (VPA) have been extensively studied for biological effects. Here, we focused on efficacy of combined CQ and VPA on osteosarcoma cell lines. Viability of osteosarcoma cell lines (U20S and HOS) was analyzed by MTT assay. Apoptotic assays and colony formation assays were also applied. ROS generation and Western Blotting were performed to determine the mechanism of CQ and VPA combination in the process of apoptosis. The viability of different osteosarcoma cell lines significantly decreased after CQ and VPA combination treatment compared with either drug used alone, and apoptosis was increased significantly. ROS generation was triggered leading to expression of apoptosis related genes being increased and of antiapoptotic related genes being decreased. From our data shown here, CQ and VPA combination treatment in vitro enhanced cytotoxicy to osteosarcoma cells.

A Comparison Study of MMP Inhibitors' and Doxorubicin's Effects on the Apoptosis of U2OS Osteosarcoma Cell Line (U2OS 골육종 세포주의 세포자멸사에서 MMP억제제와 Doxorubicin 작용의 비교연구)

  • Moon, Jeong-Seok;Yeom, Bum-Woo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the proapoptotic effects of matrix metal-loproteinase inhibitor (MMPI) and doxorubicin on wild-type p53 osteosarcoma cell line, socalled U2OS cell line. Materials and Methods: U2OS cells were treated with MMP inhibitor III (MMPI III) and doxorubicin, either respectively or simultaneously. In cells treated with doxorubicin, Fas-neutralizing antibody so called ZB4 was additionally treated to examine whether the doxorubicin played a role through the Fas/FasL pathway. Cells were analysed regarding to apoptosis and cell death by flow cytometry. Results: U2OS cells incubated with doxorubicin showed significant amount of cell death in dose-dependent manner. However, those incubated with MMPI III mostly remained viable state. In addition, there is no relationship between two drugs. Cells treated with doxorubicin and ZB4 at the same time did not show down regulation of apoptosis through inhibition of Fas/FasL pathway. Conclusion: It is important to re-examine MMP inhibitor's effect on other osteosarcoma cell line with wild-type p14 as well as wild-type p53 to evaluate its proapoptotic effect.

  • PDF

Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis

  • Zhang, Xian;Guo, Qinggong;Chen, Jingtao;Chen, Zhaohui
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.638-642
    • /
    • 2015
  • Quercetin can suppress osteosarcoma cell growth and metastasis. However, other effects of quercetin on osteosarcoma remain largely unknown. This research aims to evaluate the effects of quercetin in combination with cisplatin as treatment for osteosarcoma and investigate its regulatory mechanism. Cell viability and apoptosis in 143B cell line were determined after treatment with quercetin and/or cisplatin. RT-PCR and Western blot analysis were performed to determine the RNA or protein expression levels. Moreover, transwell assay was used to evaluate metastasis. Furthermore, rescue experiments were performed to investigate the potential regulatory mechanism of the treatment. Results showed that quercetin with concentration that was equal to or greater than $10{\mu}M$ inhibited 143B proliferation, while $5{\mu}M$ quercetin enhanced the cisplatin sensitivity of 143B cells. Expression of miR-217 was upregulated after quercetin and/or cisplatin treatment, while its target KRAS was downregulated both at mRNA and protein levels. MiR-217 knockdown led to the loss of enhanced cisplatin sensitivity while miR-217 overexpression showed the opposite effects, indicating that quercetin regulated cisplatin sensitivity by modulating the miR-217-KRAS axis. In conclusion, $5{\mu}M$ quercetin enhanced the cisplatin sensitivity by modulating the miR-217-KRAS axis. This finding suggests that quercetin may be administered with cisplatin to improve the treatment for osteosarcoma.

Suppression of Ku80 Correlates with Radiosensitivity and Telomere Shortening in the U2OS Telomerase-negative Osteosarcoma Cell Line

  • Hu, Liu;Wu, Qin-Qin;Wang, Wen-Bo;Jiang, Huan-Gang;Yang, Lei;Liu, Yu;Yu, Hai-Jun;Xie, Cong-Hua;Zhou, Yun-Feng;Zhou, Fu-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.795-799
    • /
    • 2013
  • Ku70/80 heterodimer is a central element in the nonhomologous end joining (NHEJ) DNA repair pathway, Ku80 playing a key role in regulating the multiple functions of Ku proteins. It has been found that the Ku80 protein located at telomeres is a major contributor to radiosensitivity in some telomerase positive human cancer cells. However, in ALT human osteosarcoma cells, the precise function in radiosensitivity and telomere maintenance is still unknown. The aim of this study was to investigate the effects of Ku80 depletion in the U2OS ALT cell line cell line. Suppression of Ku80 expression was performed using a vector-based shRNA and stable Ku80 knockdown in cells was verified by Western blotting. U2OS cells treated with shRNA-Ku80 showed lower radiobiological parameters (D0, Dq and SF2) in clonogenic assays. Furthermore, shRNA-Ku80 vector transfected cells displayed shortening of the telomere length and showed less expression of TRF2 protein. These results demonstrated that down-regulation of Ku80 can sensitize ALT cells U2OS to radiation, and this radiosensitization is related to telomere length shortening.

Identification and Functional Analysis of Differentially Expressed Genes Related to Metastatic Osteosarcoma

  • Niu, Feng;Zhao, Song;Xu, Chang-Yan;Chen, Lin;Ye, Long;Bi, Gui-Bin;Tian, Gang;Gong, Ping;Nie, Tian-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10797-10801
    • /
    • 2015
  • Background: To explore the molecular mechanisms of metastatic osteosarcoma (OS) by using the microarray expression profiles of metastatic and non-metastatic OS samples. Materials and Methods: The gene expression profile GSE37552 was downloaded from Gene Expression Omnibus database, including 2 human metastatic OS cell line models and 2 two non-metastatic OS cell line models. The differentially expressed genes (DEGs) were identified by Multtest package in R language. In addition, functional enrichment analysis of the DEGs was performed by WebGestalt, and the protein-protein interaction (PPI) networks were constructed by Hitpredict, then the signal pathways of the genes involved in the networks were performed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server (KAAS). Results: A total of 237 genes were classified as DEGs in metastatic OS. The most significant up- and down-regulated genes were A2M (alpha-2-macroglobulin) and BCAN (brevican). The DEGs were significantly related to the response to hormone stimulus, and the PPI network of A2M contained IL1B (interleukin), LRP1 (low-density lipoprotein receptor-related protein 1) and PDGF (platelet-derived growth factor). Furthermore, the MAPK signaling pathway and focal adhesion were significantly enriched. Conclusions: A2M and its interactive proteins, such as IL1B, LRP1 and PDGF may be candidate target molecules to monitor, diagnose and treat metastatic OS. The response to hormone stimulus, MAPK signaling pathway and focal adhesion may play important roles in metastatic OS.

Effects of Ibandronate on the Expression of Matrix Metalloproteinases in Human U2OS Osteosarcoma Cells (사람 U2OS 골육종 세포에서 Matrix Metalloproteinase의 발현에 Ibandronate가 미치는 영향)

  • Jung, Sung-Taek;Seo, Hyoung-Yeon;Xin, Zeng-Feng;Kim, Yang-Kyung;Kim, Hyung-Won
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Background: Osteosarcoma is one of the most common primary malignant tumors of bone occurring mainly in children and adolescents. Although surgery combined with chemotherapy has markedly improved patient survival during the last years, the use of anticancer drugs is still associated with serious problem, such as the frequent acquisition of drug-resistant phenotypes and occurrence of "secondary malignancies". Several solid tumors display enhanced expression of matrix metalloproteinases (MMPs), and recently clinical trials have been initiated on MMP-inhibitors. On the other hand, bisphosphonates (BPs) are inhibitors of bone resorption, and widely used to treat osteoclast-mediated bone diseases. Also they appear to possess direct antitumor activity. Methods: One osteosarcoma cell line (U2OS) was treated with ibandronate (0, 0.1, 1, $10{\mu}M$) for 48 hours. Cell viabilities were determined using MTT assay, the mRNA levels of MMP-2 and MT1-MMP were detected by reverse-transcription polymerase chain reaction, the amount of MMP-2 and MT1-MMP protein were measured by Westernblot, the activities of MMP-2 were observed by Gelatin zymography, and Matrigel invasion assays were used to investigate the invasive potential of osteosarcoma cell lines before and after ibandronate treatment. Results: The invasiveness of U2OS cell line was reduced dose-dependently following 48 hour treatment of up to $10{\mu}M$ of the ibandronate at which concentration no cytotoxicity occurred. Furthermore, the gelatinolytic activities and protein and mRNA levels of MMP-2 and MT1-MMP were also suppressed by increasing ibandronate concentrations. Conclusion: Given that MMP-2 is instrumental in tumor cell invasion, it is very likely that the reduction in osteosarcoma cell invasion by ibandronate is a consequence, at least in part, of suppressed expression of both MMP-2 and MT1-MMP. Isolation of a molecule (s) responsible for the bisphosphonate inhibition of tumor cell invasion would pave the way for the development of a new generation of metastasis inhibitors.

  • PDF

AN EXPERIMENTAL STUDY ON THE RADIOSENSITIVITY AND CHEMOSENSITIVITY OF MG-63 CELL LINE (MG-63 세포주의 방사선 및 항암제감수성에 관한 실험적 연구)

  • Lee Un-Gyeong;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.121-132
    • /
    • 1996
  • The purpose of this study was to aid in the prediction of tumor cell tolerance to radiotherapy and/or chemotherapy. For this study, cell surviving curves were obtained for human osteosarcoma MG-63 cell line using semiautomated MTT assay. 2,4, 6, 8, 10Gy were irradiated at a dose rate of 210cGy/min using /sup 60/Co Irradiator ALDORADO 8. After irradiation, MG-63 cell lines(3×10⁴ cells/ml) were exposed to bleomycin and cisplatin at concentration of 0.2, 2, 20㎍/㎖ for 1 hour respectively. The viable cells were determined for each radiation dose and/or each concentration of drug. And they were compared to control values. The obtained results were as follows : 1. There was significant difference of surviving fraction at 4, 6, 8, 10Gy on MG-63 cell line(p<0.05). 2. There was significant difference of cytotoxicity of bleomycin or cisplatin at all concentration of 0.2, 2, 20㎍/㎖ (p<0.05) on MG-63 cell line. The cytotoxicity of cisplatin was more effective than bleomycin at concentration of 20㎍/㎖ on MG-63 cell line. 3. There was significant difference of cytotoxicity of bleomycin or cisplatin at all concentration after irradiation of 2Gy on MG-63 cell line. 4. There was significant difference of cytotoxicity of bloemycin or cisplatin at concentration of 20㎍/㎖ after irradiation than that of irradiation alone(p<0.01). But there was no significant difference of cytotoxicity of bleomycin at concentration of 20㎍/㎖ after irradiation of l0Gy than that of irradiation alone.

  • PDF