• Title/Summary/Keyword: Osteocyte

Search Result 35, Processing Time 0.021 seconds

Decreased Contact Inhibition in Mouse Adipose Mesenchymal Stem Cells

  • Jeon, Yunmi;Lee, Myung Sook;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.329-338
    • /
    • 2012
  • The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

HSP27 CONTRIBUTES TO ESTROGEN REGULATION OF OSTEOBLAST APOPTOSIS (조골세포 세포사멸의 Estrogen 조절에 대한 Hsp27의 영향에 관한 연구)

  • Jang, Hyon-Seok;Eune, Jung-Ju;Rim, Jae-Suk;Kwon, Jong-Jin;Choi, Cheol-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.323-330
    • /
    • 2004
  • Estrogen may promote osteoblast/osteocyte viability by limiting apoptotic cell death. We hypothesize that hsp27 is an estrogen- regulated protein that can promote osteoblast viability by increasing osteoblast resistance to apoptosis. The purpose of this study was to determine the effect of estrogen treatment and heat shock on $TNF{\alpha}$ - induced apoptosis in the MC3T3-E1 cell line. Cells were treated with 0 - 100 nM $17{\beta}$ estradiol (or ICI 182780) for 0 - 24 hours before heat shock. After recovery, apoptosis was induced by treatment with 0 - 10 ng/ml TNF${\alpha}$. Hsp levels were evaluated by Northern and Western analysis using hsp27, hsp47, hsp70c and hsp70i - specific reagents. Apoptosis was revealed by in situ labeling with Terminal Deoxyribonucleotide Transferase (TUNEL). A 5 - fold increase in hsp27 protein and mRNA was noted after 5 hours of treatment with 10 - 20 nM $17{\beta}$ estradiol prior to heat shock. Increased abundance of hsp47, hsp70c or hsp70i was not observed. TUNEL indicated that estrogen treatment also reduced (50%) MC3T3-E1 cell susceptibility to $TNF{\alpha}$ - induced apoptosis. Treatment with hsp27-specific antisense oligonucleotides prevented hsp27 protein expression and abolished the protective effects of heat shock and estrogen treatment on $TNF{\alpha}$- induced apoptosis. Hsp27 is a determinant of osteoblast apoptosis, and estrogen treatment increases hsp27 levels in cultured osteoblastic cells. Hsp27 contributes to the control of osteoblast apoptosis and may be manipulated by estrogenic or alternative pathways for the improvement of bone mass.

A STUDY OF $TGF-{\beta}$ EXPRESSION DURING PALATOGENESIS IN RATS WITH CLEFT PALATE INDUCED BY BAPN (($TGF-{\beta}$ 발현이 BAPN으로 유도된 구개열 백서의 구개 형성에 미치는 영향에 대한 실험적 연구)

  • Tae, Ki-Chul;Lee, Dong-Kun;Kim, Jeng-Ghee
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • Cleft palate is one of the most serious congenital anomalies in human that causes a sucking problem in newborn babies and morphologic deformity that usually leads to death in newborn mouse offspring due to an insufficient ability to suck milk. Therefore cleft palate had been researched with epidemiologic and molecular methods, and many etiologic factors were examined closely. Among of the research methods, biologic molecule researches have been more important method for cleft palate formation study. The $TGF-{\beta}$ had an important role in the cell migration, epithelial-mesenchymal transdifferentiation, extracellular matrix synthesis and deposition. But there was a little research which was study about correlation cleft palate induced by beta-aminonitroproprionitrile(BAPN) with $TGF-{\beta}$ expression. A purpose of this presented study was examed how $TGF-{\beta}$ expression in cleft palate mice. At gestation days 13, BAPN-monofumarate salts($(C_3H_6N_2)_2$ ${\cdot}$ $C_4H_4O_4$, Sigma Co.) was single oral administered to 4 pregnant rats according to 1g/kg body weight. And pregnant rats were sacrificed on day 20 post coitus(p.c.), The $TGF-{\beta}$ expression patterns of cleft formed fetus mice was followed that; 1.Osteoblast, mesenchymal cell and epithelial cell of cleft mice were low expression compare to control mice. 2.There was no $TGF-{\beta}$ difference expression pattern of osteocyte of cleft mice compare to control mice. 3. In western blot analysis, thickness of band of $TGF-{\beta}$ in cleft mice was thin and dilute compare to control mice.

  • PDF

Hypoxia Inducible Factor-$1{\alpha}$ Directly Induces the Expression of Receptor Activator of Nuclear Factor-${\kappa}B$ Ligand in MLO-Y4 Osteocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Osteocytes may function as mechanotransducers by regulating local osteoclastogenesis. Reduced availability of oxygen, i.e. hypoxia, could occur during disuse, bone development, and fracture. Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell derived essential factor for osteoclastogenesis. The hypoxia induced osteoclastogenesis via increased RANKL expression in osteoblasts was demonstrated. Hypoxic regulation of gene expression generally involves activation of the hypoxia-inducible factor (HIF) transcription pathway. In the present study, we investigated whether hypoxia regulates RANKL expression in murine osteocytes and HIF-$1{\alpha}$ mediates hypoxia-induced RANKL expression by transactivating RANKL promoter, to elucidate the role of osteocyte in osteoclastogenesis in the context of hypoxic condition. The expression levels of RANKL mRNA and protein, as well as hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) protein, were significantly increased in hypoxic condition in MLO-Y4s. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression in MLO-Y4s under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ blocked hypoxia-induced RANKL expression. To further explore to find if HIF-$1{\alpha}$ directly regulates RANKL transcription, a luciferase reporter assay was conducted. Hypoxia significantly increased RANKL promoter activity, whereas mutations of putative HIF-$1{\alpha}$ binding elements in RANKL promoter prevented this hypoxia-induced RANKL promoter activity in MLO-Y4s. These results suggest that HIF-$1{\alpha}$ mediates hypoxia-induced up-regulation of RANKL expression, and that in osteocytes of mechanically unloaded bone, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in osteocytes.

Clinical and histopathological study using platelet-rich plasma and bone graft in the localized alveolar bone defects (치조제 결손부에 매식체 식립 시 혈소판 농축 혈장과 골이식술의 사용이 골형성에 미치는 영향에 대한 임상 및 조직 병리학적 연구)

  • Jung, Ui-Young;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.251-261
    • /
    • 2005
  • Alveolar ridge defects may limit or restrict placement of implants. The purpose of this study was to evaluate clinical and histopathologic results which occur following guided bone regeneration using platelet-rich plasma, bovine bone powder and e-PTFE membrane in the localized alveolar bone defects. Ten patients who required guided bone regeneration in implant placemnet, were slelected. Alveolar crest height and width were measured at baseline and, afer 2nd surgery 5 months later At 5 months , we obtained histopathological results as follows: 1. Alveolar crest height was an average of $8.20{\pm}3.74$ mm preoperatively and decreased to an average of $7.40{\pm}1.84$ mm postoperatively. There was no significant difference. 2. Alveolar crest width was an average of $4.25{\pm}2.03$ mm preoperatively and significantly increased to an average of $7.20{\pm}2.44$ mm postoperatively (P<0.01) 3. The change of Alveolar crest height and width were $0.80{\pm}1.40$ mm, $2.95{\pm}1.09$ mm 4. Histopathological evaluations revealed new bone formation with graft material and laminated bone containing the presence of osteocyte-like cell In conclusion, guided bone regeneration using platelet-rich plasma, bovine bone powder and e-PTFE membrane would provide a viable therapeutic alternative for implant placement in the localized alveolar defect or implant failure

Effects of Microcurrent and High Voltage Pulsed Galvanic Current Stimulation on Fibular Fracture Healing of the Rabbits (미세전류자극과 고전압 맥동직류 통전이 토끼의 비골 골절치유에 미치는 효과)

  • Ko, Seung-Hyun;Yoon, Bum-Chul;Kim, Ji-Sung;Min, Kyung-Ok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.286-292
    • /
    • 2011
  • This study investigated the degree of fracture healing using cathode stimulation of microcurrent, cathode and anode stimulation of High Voltage Pulsed Galvanic Current (HVPGC). Measures were performed by X-ray test and Hematoxylin-Eosin stain and Masson's trichrome stain and osteocalcin-positive immunoreactivity. In the measure of X-ray, microcurrent stimulation group revealed more rapid recovery than the groups of HVPGC's cathode and anode stimulation in bone union degrees. Microcurrent group showed significant difference statistically (p<0.05). However, the groups of HVPGC's cathode and anode stimulation didn't show significant difference statistically(p>0.05). In the histologic examination with Hematoxylin-Eosin and Masson's trichrome, microcurrent stimulation group was observed more proliferation of irregular woven bones than the groups of HVPGC's cathode and anode stimulation. Osteocalcin-positive immunoreactivity was observed more osteoblast, osteocyte, osteoclast, bone matrix than the groups of HVPGC's cathode and anode stimulation. Microcurrent stimulation can be considered an effective way during healing of fresh fracture and it can show more effective method than HVPGC's cathode and anode stimulation in the fracture healing.

The Comparison of the Effects on the Regeneration with Xenografts on the Furcation Involvement in Beagle Dogs (성견 치근 이개부 병소에서 이종골 이식재의 치주조직 재생에 미치는 영향에 대한 비교 연구)

  • Cho, Jin-Sang;Kim, Jong-Yeo;Chung, Chin-Hyung;Yim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.277-287
    • /
    • 2000
  • For the regeneration of osseous defect on the furcation area, autogeneous bone graft has been primarily used. But it has the limitation of donor site, additive surgical operation etc. Recently anorganic xenogenic bone graft materials of removing all organic components are commonly used for the regeneration of periodontal defects. This study was the comparison of the effect on the regeneration with two types xenografts($Bio-oss^{(R)}$ and Ca-P thin coated Bovine bone powder) on the furcation involvement in Beagle dogs. After surgically induced chronic periodontitis in bifurcation area of premolar, $Bio-oss^{(R)}$ and Ca-P BBP were grafted on the osseous defects. Tissue blocks including defects with soft tissues were harvested following a four-& eight-week healing interval and prepared for histologic analysis. The results of this study were as follows: 1. $Bio-oss^{(R)}$ group: there were significant differences among the $Bio-oss^{?}$ group at 4weeks and 8weeks, but the control group had various appearances : new bone formation, resorption of graft materials by multinuclear giant cells, connective tissue cells intervention in the bone graft sites etc. 2. Ca-P BBP group: lots of new bone formation were observed but the arrangement of periodontal ligament was not completed at 4weeks. New bone were replaced mature bone and the periodontal ligaments showed the functional arrangement at 8weeks. 3. By reason of undergrowing the epithelium within the osseous defects, new bone formation was not happened in the upper area of bifurcation in $Bio-oss^{(R)}$ group. 4. In Ca-P BBP group, epithelial undergrowth was not seen and generally showed much more new bone formation. 5. Ca-P BBP group showed the osteocyte-like cells at the inner portion of the graft materials 6. Both groups were similar to resorptive appearances of graft materials, but Ca-P BBP group had the better effects of osteoconduction.

  • PDF

Characterization and Differentiation of Synovial Fluid Derived Mesenchymal Stem Cells from Dog (개 관절 윤활액 유래 중간엽 줄기세포의 특성과 분화능 분석)

  • Lee, Jeong-Hyeon;Lee, Sung-Lim
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% $CO_2$ atmosphere at $38.5^{\circ}C$. The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-${\gamma}2$, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.

Predicting the Role of Osteal Macrophages and Osteocytes in Bone Tissue Network Using a Mathematical Modeling (수학적 모델링을 이용한 골조직 세포 네트워크에서 Osteal Macrophage와 골세포의 역할 예측)

  • Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.130-135
    • /
    • 2018
  • The aim of this study was to investigate the role of osteal macrophages (osteomac) and osteocytes in bone remodeling using a mathematical model. We constructed the bone system with pre-osteoblasts, osteoclasts, osteocytes, and osteomac. Each link of the parameters and ordinary differential equations followed the Graham's model in 2013 except for the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts. We simulated the changes in each cell and bone volume according to the changes in the parameters of osteomac signaling and osteocytes signaling. The results showed bone volume was unstable and decreased gradually when the effectiveness of osteocytes and osteomac dropped below a certain level. When the parameters of osteomac signaling and osteocytes signaling to link preosteoblasts and osteoblasts had a value less than 1, bone volume increased with the increase in the parameter of osteomac signaling to link preosteoblasts and osteoblasts. Moreover, although the parameter of osteocytes signaling to link preosteoblasts and osteoblasts, increased in case of a small parameter of osteomac signaling, bone volulme decreased. If the parameters of osteomac signaling to link preosteoblasts and osteoblasts were over a certain level, bone volume was positively maintained, despite the parameter of osteocyte signaling to link preosteoblasts and osteoblasts. We suggested the osteomac may affect bone remodeling and may play an important role in bone cell network.