• Title/Summary/Keyword: Osteoclast precursor cell

Search Result 19, Processing Time 0.025 seconds

The Regulatory Role of Chenodeoxycholic Acid on the Proliferation of Osteoclast Precursor Cells (Chenodeoxycholic Acid에 의한 파골전구세포의 증식 조절)

  • Noh, A Long Sae Mi;Yim, Mijung
    • YAKHAK HOEJI
    • /
    • v.58 no.3
    • /
    • pp.165-170
    • /
    • 2014
  • We investigated the effect of Chenodeoxycholic acid (CDCA) on the proliferation of osteoclast precursor cells. CDCA decreased the proliferation of osteoclast precursor cells through the control of cell cycle regulators such as cyclin D1, p21 and p27. When we checked the signaling pathway, CDCA decreased Erk activation in osteoclast precursor cells. Furthermore, two bile acid receptors, FXR and TGR5, were involved in the suppressive effect of CDCA. Taken together, this study suggested that bile acid plays an important role in the proliferation of osteoclast precursor cells.

Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향)

  • Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

Effect of Treponema lecithinolyticum lipopolysaccharide on matrix metalloproteinase-9 expression (Treponema lecithinolyticum lipopolysaccharide에 의한 matrix metalloproteinase-9의 발현)

  • Nam, Jeong-Ah;Moon, Sun-Young;Lee, Jin-Wook;Cha, Jeong-Heon;Choi, Bong-Kyu;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.675-685
    • /
    • 2005
  • Bone resorption involves sequential stages of osteoclast precursor migration and differentiation of osteoclast precursors into multinucleated osteoclasts. Stromal cell derived factor (SDF)-1 is a chemotactic factor for osteoclast precursor migration. Matrix metalloproteinase (MMP)-9 is involved in migration of osteoclast precursors and activation of $interleukin(IL)-1{\beta}$. Alveolar bone destruction is a characteristic feature of periodontal disease. Treponema lecithinolyticum is a oral spirochete isolated from the periodontal lesions. The effect of lipopolysaccharide(LPS) from T. lecithinolyticum on expression of SDF-1 and MMP-9 was examined in cocultures of bone marrow cells and osteblasts derived from mouse calvariae. T. lecithinolyticum LPS increased expression of MMP-9 in the coculture. Polymyxin B, an inhibitor of LPS, abolished the increase of MMP-9 mRNA expression by LPS. LPS did not increase the expression of SDF-1, $IL-1{\beta}$ and tumor necrosis $factor(TNF)-{\alpha}$ mRNA in cocultures. Prostaglandin $E_2(PGE_2)$ up-regulated the expression of MMP-9 and NS398, an inhibitor of $PGE_2$ synthesis, down-regulated the induction of MMP-9 expression by T. lecitbinolyticm LPS. These results suggest that T. lecitbinolyticm LPS increases MMP-9 expression in bone cells via $PGE_2$ and that the induction of MMP-9 expression by T. lecitbinolyticm LPS is involved in alveolar bone destruction of periodontitis patients by the increase of osteoclast precursor migration and the activation of bone resorption-inducing cytokine.

The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.469-474
    • /
    • 2019
  • Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of $NF-{\kappa}B$. Although the $NF-{\kappa}B$ pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.

IRF2 enhances RANKL-induced osteoclast differentiation via regulating NF-κB/NFATc1 signaling

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Lee, Keun-Bae;Kim, Nacksung
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.482-487
    • /
    • 2021
  • Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast precursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclastogenesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.

Expression of receptors of Vitamin D and cytokines in osteoclasts differentiated by M-CSF and ODF (Macrophage Colony-Stimulating Factor와 Osteoclast Differentiation Factor로 분화 유도된 생쥐 파골세포에서 Vitamin D 및 수종의 싸이토카인 수용체의 발현)

  • Seong, Soo-Mi;Um, Heung-Sik;Ko, Sung-Hee;Woo, Kyung-Mi;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.865-873
    • /
    • 2002
  • The primary cause of tooth loss after 30 years of age is periodontal disease. Destruction of alveolar bone by periodontal disease is done by bone resorbing activity of osteoclasts. Understanding differentiation and activation mechanism of osteoclasts is essential for controling periodontal disease. The purpose of this study is to identify the possible effects of Vitamin D and cytokines affecting osteoclasts and its precursor cells. Four to six week-old mice were killed and humerus, radius, tibia and femur were removed aseptically and washed two times with Hank's solution containing penicillin-streptomycin and then soft tissue were removed. Bone marrow cells were collected by 22 gauge needle. Cells were cultured in Hank's solution containing 1 mg/ml type II collagenase, 0.05% trypsin, 41mM EDTA. Supernatant solution was removed 5 times after 15 minutes of digestion with above mentioned enzyme solution, and remained bone particles were maintained in alpha-MEM for 15 minutes and $4^{\circ}C$ temperature. Bone particles were agitated for 1 minute and supernatant solution containing osteoclast precursor cells were filtrated with cell stainer. These separated osteoclast precursor cells were dispensed with 100-mm culture dish by $1{\times}10^7$ cells unit and cultured in ${\alpha}$- MEM containing 20 ng/ml recombinant human M-CSF, 30 ng/ml recombinant human soluble osteoclast differentiation factor and 10% fetal calf serum for 2 and 7 days. Total RNA of osteoclast precursor cells were extracted using RNeasy kit. One ${\mu}g$ of total RNA was reverse transcribed in $42^{\circ}C$ for 30 minutes using SuperScriptII reverse transcriptase. Expression of transcribed receptors of each hormone and cytokine were traced with 1 ${\mu}l$ of cDNA solution by PCR amplification. Vitamin D receptor WAS found in cells cultured for 7 days. TNF-${\alpha}$ receptor was found in cells cultured for 2 days and amount of receptors were increased by 7 days. IL-1 type I receptor was not found in cells cultured 2 and 7 days. But, IL-1 receptor type II was found in cells cultured for 2 days. TGF-${\alpha},{\beta}$type I receptor was found in cells cultured 2 and 7 days, and amount of receptors were increased by 7 days of culture. These results implies Vitamin D and cytokines can affect osteoclasts directly, and affecting period in differentiation cycle of osteoclasts is different by Vitamin D and cytokines.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Inhibitory effect of Chaenomelis Fructus ethanol extract on receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis

  • Park, Geun Ha;Gu, Dong Ryun;Lee, Seoung Hoon
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • The fruit of Chaenomeles sinensis (Thouin) Koehne (Chaenomelis Fructus) known as "Mo-Gua" in Korea has been commonly used in traditional medicine to treat inflammatory diseases, such as sore throat. However, its effect on bone metabolism has not been elucidated yet. Here, we examined the effect of Chaenomelis Fructus ethanol extract (CF-E) on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation and formation. CF-E considerably inhibited osteoclast differentiation and tartrate-resistant acid phosphatase-positive multinuclear cell formation from bone marrow-derived macrophages and osteoclast precursor cells in a dose-dependent manner. In addition, the formation of actin rings and resorption pits were significantly suppressed in CF-E-treated osteoclasts as compared with the findings in non-treated control cells. Consistent with these phenotypic inhibitory results, the expressions of osteoclast differentiation marker genes (Acp5, Atp6v0d2, Oscar, CtsK, and Tm7sf4) and Nfatc1, a pivotal transcription factor for osteoclastogenesis, were markedly decreased by CF-E treatment. The inhibitory effect of CF-E on RANKL-induced osteoclastogenesis was associated with the suppression of NFATc1 expression, not by regulation of mitogen-activated protein kinases and NF-κB activation but by the inactivation of phospholipase C gamma 1 and 2. These results indicate that CF-E has an inhibitory effect on osteoclast differentiation and formation, and they suggest the possibility of CF-E as a traditional therapeutic agent against bone-resorptive diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.

MicroRNA-26a Regulates RANKL-Induced Osteoclast Formation

  • Kim, Kabsun;Kim, Jung Ha;Kim, Inyoung;Lee, Jongwon;Seong, Semun;Park, Yong-Wook;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.75-80
    • /
    • 2015
  • Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was upregulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precursor cells attenuated osteoclast formation, actin-ring formation, and bone resorption by suppressing the expression of connective tissue growth factor/CCN family 2 (CTGF/CCN2), which can promote osteoclast formation via upregulation of dendritic cell-specific transmembrane protein (DC-STAMP). On the other hand, overexpression of miR-26a inhibitor enhanced RANKL-induced osteoclast formation and function as well as CTGF expression. In addition, the inhibitory effect of miR-26a on osteoclast formation and function was prevented by treatment with recombinant CTGF. Collectively, our results suggest that miR-26a modulates osteoclast formation and function through the regulation of CTGF.