• Title/Summary/Keyword: Osteoblast-like cell

Search Result 156, Processing Time 0.029 seconds

Taurine Activates ERK2 and Induces the Production of Nitric Oxide in Osteoblast-like UMR-106 Cells

  • Park, Sung-Youn;Kim, Harriet;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.145-145
    • /
    • 1998
  • In the present study, we have demonstrated that taurine could stimulate the production of nitric oxide and the activity of ERK2 (extracellular signal regulated protein kinase or pp42 MAP kinase). Nitric oxide(NO), the product of inducible nitric oxide synthase(iNOS), is known to be implicated in the metabolism of bone. ERK cascade plays a key role in the gene expression of iNOS in osteoblastic cell. We investigated whether taurine (l-20mM) could stimulate ERK2 activity, nitric oxide production, and inducible nitric oxide synthase in osteoblast-like UMR-106 cells. Nitric oxide was measured spectophotometrically as nitrite and the activation of ERK2 and iNOS was studied using Western 145 blot analysis. Taurine increased the production of nitric oxide in a dose-dependent manner and the effect was reached to a maximum at 10 mM. The activation of iNOS were consistent with NO levels. The tyrosine phosphorylation of ERK2 was increased by taurine in a time-dependent manner. The these result suggest that taurine might stimulate the production of nitric oxide in osteoblast-like cells by the activation of ERK2 and could regulate the metabolism of bone via nitric oxide.

  • PDF

Effects of Phytoestrogen on Cell Growth and Insulin-like Growth Factor-I (IGF-I) Production in MC3T3-El Cells (식물성 에스트로겐이 MC3T3-El 골아세포의 성장과 Insulin-like Growth Factor-1(IGF-1)생성에 미치는 영향)

  • Kwon, Ji-Young;Nam, Taek-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.743-749
    • /
    • 2005
  • Estrogen is known to play an important role in maintaining bone mass, since the concentration of serum estrogen decrease after menopause and the estrogen deficiency results in bone loss. Phytoestrogens are plant compounds with estrogen-like biological activity, In this study, to investigate the bioactivities of phytoestrogen, which act on bone metabolism, we examined the effect of selected food-borne phytoestrogens (genistein, daidzein and resveratrol) on osteoblast proliferation and IGF-I production using MC3T3-El cells, a mouse calvaria osteoblast-like cell line. Cells were cultured in a serum free medium for 48 hr in the presence of genistein $(10^{-5}\;M)$, daidzein $(10^{-5}\;M)$ and resveratrol $(10^{-5}\;M)$. The effects of genistein, daidzein and resveratrol on the cell proliferation and growth were evaluated by total cell numbers, MTS assay and cell migration assay. Their effect was compared with the $17\beta-estradiol$. Genistein, daidzein and resveratrol exhibited stimulatory effects on the growth of MC3T3-El cells, and the most pronounced effect was shown with daidzein. In addition, these phytoestrogen increased alkaline phosphatase activity of MC3T3-El cells. These effects were similar to that of $17\beta-estradiol$ effects. Moreover, treatment with genistein, daidzein and resveratrol increased production of insulin like growth factor-I (IGF-I) in conditioned media, indicating that the growth promoting effects of these phytoestrogen were related to the changes in production of IGF-I by MC3T3-El cells. These results show that genistein, daidzein and resveratrol have a stimulatory effect on osteoblast function, and that these findings in a cell model may prove relevant to protecting against the loss of bone mass and the development of osteoporosis in human subjects.

Phenolic Compounds from the Fruit Body of Phellinus linteus Increase Alkaline Phosphatase (ALP) Activity of Human Osteoblast-like Cells

  • Lyu, Ha-Na;Lee, Dae-Young;Kim, Dong-Hyun;Yoo, Jong-Su;Lee, Min-Kyung;Kim, In-Ho;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1214-1220
    • /
    • 2008
  • Secondary metabolites from the fruit body of Phellinus linteus were evaluated for their proliferative effect on human osteoblast-like cells. 3-[4,5-Dimethylthiazole-2-y1]-2,5-diphenyl-tetraxolium bromide (MTT) assay and alkaline phosphatase (ALP) activity assay were used to assess the effect those isolates on the human osteoblast-like cell line (Saos-2). Activity-guided fractionation led to the isolation of ALP-activating phenolic compounds through the extraction of P. linteus, solvent partitioning, and repeated silica gel and octadecyl silica gel (ODS) column chromatographic separations. From the result of spectroscopic data including nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as 4-(4-hydroxyphenyl)-3-buten-2-one(1), 2-(3',4'-dihydroxyphenyl)-1,3-benzodioxole-5-aldehyde (2), 4-(3,4-dihydroxyphenyl)-3-buten-2-one (3), 3,4-dihydroxybenzaldehyde (4), and protocatechuic acid methyl ester (5), respectively. This study reports the first isolation of compounds 1-3 and 5 from P. linteus. In addition, all phenolic compounds stimulated proliferation of the osteoblast-like cells and increased their ALP activity in a dose-dependent manner ($10^{-8}$ to $10^{-1}\;mg/mL$). The present data demonstrate that phenolic compounds in P. linteus stimulated mineralization in bone formation caused by osteoporosis. The bone-formation effect of P. linteus seems to be mediated, at least partly, by the stimulating effect of the phenolic compounds on the growth of osteoblasts.

PLEIOTROPHIN (PTN) EXPRESSION IN OSTEOBLASTIC CELLS (조골세포에서 pleiotrophin(PTN)의 발현에 대한 연구)

  • Kim, Byeong-Yol;Rim, Jae-Suk;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Seok;Jun, Sang-Ho;Kim, Young-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.494-498
    • /
    • 2007
  • Pleiotrophin or osteoblast-specific factor 1(HOSF-1) is a growth-associated protein present in bone matrix. This study was designed to study pleiotrophin expression in osteoblastic cells. Pleiotrophin was expressed by osteoblast-like cell line. Pleiotrophin expression increased following the proliferative phase and was minimal at the terminal phases of the induced differentiation of cultured MC3T3-E1 cells. Pleiotrophin expression represents another autocrine factor that may contribute to the physiologic control of induced bone formation. In this study, induced osteogenesis will be examined in the context of the osteoblast expression of and regulation by PTN. I hypothesized that PDGF-BB stimulation of PTN expression represents an important paracrine signal during the induced osteogenesis associated with periodontal and implant surgeries. The possible mediation by PTN of anabolic effects attributed to PDGF-BB stimulation was examined in cell culture models of osteoblast differentiation. These studies will contribute fundamental insights to osteoblast biology and insights regarding the potential use of factors such as PTN in the clinical environment.

Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte (인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인)

  • Cho, Hye-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

Antioxidant Activity and Cell Differentiation Effects of Monascus purpureus Pigment on Osteoblast-like MC3T3-E1 Cells (홍국색소의 항산화 활성 및 조골세포 분화에 미치는 영향)

  • Kim, Bokyung;Ryu, Jihye;Jang, Seok Oui;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.468-475
    • /
    • 2020
  • The purpose of this study was to investigate antioxidant activity and cell differentiation effects of Monascus purpureus pigment on osteoblast-like MC3T3-E1 cell. In order to examine the antioxidant activities of Monascus purpureus pigment, DPPH radical scavenging, ABTS radical scavenging and SOD-like activities were investigated. DPPH radical and ABTS radical scavenging activities of Monascus purpureus pigment were increased in a dose-dependent manner, and maximum activity were 94% and 99% at a concentration of 1,000 ㎍/ml, respectively. Additionally, SOD-like activity of Monascus purpureus pigment showed 62% at a concentration of 1,000 ㎍/ml. MC3T3-E1 cells did not show cytotoxicity in the concentration range of Monascus purpureus pigment 1~100 ㎍/ml. The ALP activity was increased by addition of Monascus purpureus pigment, and the maximum activity was 124% as compared with control. In addition, nodule formation, a late differentiation factor for bone formation, was increased by adding Monascus purpureus pigment compared to control. These results suggest that Monascus purpureus pigment is expected to be a natural source for developing functional materials to prevent bone-related diseases by osteoblast differentiation.