• 제목/요약/키워드: Osteoblast Function

검색결과 102건 처리시간 0.034초

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

테트라싸이클린 함유 차폐막을 이용한 골조직 유도 재생에 관한 연구 (Effects of Tetracycline-loaded Poly(L-lactide) Barrier Membranes on Guided Bone Regeneration in Beagle Dog)

  • 최광수;김탁;양대승;김은철;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제31권2호
    • /
    • pp.299-315
    • /
    • 2001
  • Application of membranes for guided tissue regeneration(GTR) have been confined to the subgingival barrier functions; however, many studies have provided evidence that some drugs, including tetracycline, initially can promote the growth of periodontal ligament or alveolar bone in peridontal therapy. Osseous regeneration in periodontal defects is increased by local administration of tetracycline due to its anti-collagenolytic effect, which enhances bone-forming ability via osteoblast cell chemotaxis and reduced bone resorption. The aim of this study was to evaluate effects of tetracycline loaded poly-L-lactide(PLLA) barrier membranes for guided bone regenerative potential. Tetracycline was incorporated into the PLLA membrane with the ratio 10% to PLLA by weight. Ability to guided bone regeneration of the membranes were tested by measuring new bone in the tibial defects($7{\times}10{\times}5\;mm^3$) of the beagle dog for 4,5, and 6 weeks. In control, drug-unloaded PLLA membranes were used in same size of defect. In histologic finding of the defect area, a few inflammatory cells were observed in both groups. These membrane were not perforated by connective tissue and maintained their mechanical integrity for the barrier function for 4-6 weeks. New bone formation was greater in defects covered by tetracycline-loaded membrane than in defects covered by drug- unloaded membranes. In bone regeneration guiding potential test, tetracycline-loaded membrane was more effective than drug- unloaded membranes(p<0.05). These results suggest that tetracycline-loaded PLLA membranes potentially enhance guided bone regenerative efficacy and might be a useful barrier for GTR in periodontal treatment.

  • PDF

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Boeravinone B, a natural rotenoid, inhibits osteoclast differentiation through modulating NF-κB, MAPK and PI3K/Akt signaling pathways

  • Xianyu Piao;Jung-Woo Kim;Moonjung Hyun;Zhao Wang;Suk-Gyun Park;In A Cho;Je-Hwang Ryu;Bin-Na Lee;Ju Han Song;Jeong-Tae Koh
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.545-550
    • /
    • 2023
  • Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomy-induced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis.

NOX4 and its association with myeloperoxidase and osteopontin in regulating endochondral ossification

  • Kayoung Ko;Seohee Choi;Miri Jo;Chaeyoung Kim;Napissara Boonpraman;Jihyun Youm;Sun Shin Yi
    • Journal of Veterinary Science
    • /
    • 제25권4호
    • /
    • pp.49.1-49.15
    • /
    • 2024
  • Importance: Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth. This investigation provides further evidence by showing a direct link between NOX4 and MPO, OPN in bone function. Objective: This study investigates NOX4, an enzyme producing hydrogen peroxide, in endochondral ossification and bone remodeling. NOX4's role in osteoblast formation and osteogenic signaling pathways is explored. Methods: Using NOX4-deficient (NOX4-/-) and ovariectomized (OVX) mice, we identify NOX4's potential mediators in bone maturation. Results: NOX4-/- mice displayed significant differences in bone mass and structure. Compared to the normal Control and OVX groups. Hematoxylin and eosin staining showed NOX4-/- mice had the highest trabecular bone volume, while OVX had the lowest. Proteomic analysis revealed significantly elevated MPO and OPN levels in bone marrow-derived cells in NOX4-/- mice. Immunohistochemistry confirmed increased MPO, OPN, and collagen II (COLII) near the epiphyseal plate. Collagen and chondrogenesis analysis supported enhanced bone development in NOX4-/- mice. Conclusions and Relevance: Our results emphasize NOX4's significance in bone morphology, mesenchymal stem cell proteomics, immunohistochemistry, collagen levels, and chondrogenesis. NOX4 deficiency enhances bone development and endochondral ossification, potentially through increased MPO, OPN, and COLII expression. These findings suggest therapeutic implications for skeletal disorders.

($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향 (The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts)

  • 임기정;한경윤;김병옥;임창엽;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

백서두개골 결손부에서 키토산/흡수성 콜라겐 전달체의 골재생 (The effect of chitosan/ACS on bone regeneration in rat calvarial defects)

  • 김수경;석헌주;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.457-474
    • /
    • 2003
  • The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal of tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can he used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region, For an experimental model, a calvarial defect of rat m s selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted was conducted with by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and his tometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogensis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1%, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.

두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할 (THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT)

  • 송민호;박미현;남순현;김영진;류현모;김현정
    • 대한소아치과학회지
    • /
    • 제30권3호
    • /
    • pp.391-405
    • /
    • 2003
  • 두개봉합부의 조기융합으로 일컬어지는 craniosynostosis는 두개봉합부에서의 골아세포의 조기분화 및 석회화의 결과로 나타나는 선천성 발육이상이다. 최근 유전학적 연구에 의하면 homeobox gene인 Msx2의 변이에 의해 Boston-type craniosynostosis가 야기되며, 또한 Dlx5 homozygote mutant mouse의 표현형에서 두개골의 골화지연을 포함한 다양한 두개안면부위의 이상을 발견하였다는 보고가 있었다. 게다가 Msx2와 Dlx5 homeodomain protein의 상호작용에 의해 성숙골아세포의 표지자인 osteocalcin의 전사를 조절할 수 있다는 사실이 알려져 있다. 이러한 일련의 결과들은 Msx2 Dlx5 및 osteocalcin 유전자들이 두개골의 골화과정과 두개봉합부의 형태발생에 중요한 역할을 담당하고 있음을 제시해주고 있다. 두개골의 성장과 두개봉합부의 형태발생시 이러한 유전자들의 기능을 알아보기위해 mouse의 태생기 (E15-E18) 동안 osteocalcin, Msx2, 및 Dlx5 유전자들의 발현양상을 조사하였다. Osteocalcin은 E15부터 두정골의 골막에서 관찰되었으며, 발생시기가 후기일수록 강한 발현양상을 나타내었다. Msx2는 시상봉합부의 미분화간엽조직과 osteogenic front에서 강하게 발현되었으며 경막과 hair follicle에서도 관찰되었다. Dlx5는 osteogenic front를 포함한 두정골의 골막에서 강하게 발현되었으나 시상봉합부의 미분화간엽조직 에서는 발현되지 않아, Msx2와는 발현양상의 차이를 나타내었다. 두개골과 두개봉합부의 발육과정에서의 Msx2와 Dlx5의 기능을 좀더 심도깊게 분석하기위해, 여러 가지 signaling molecule들의 protein을 사용하여 in vitro 실험을 시행하였다. BMP-2, -4 protein의 overexpression은 bead 주위로 Msx2 유전자의 발현을 유도하였으나, 다른 $TGF{\beta}$ superfamily인 $TGF{\beta}1$, GDF-6, -7 bead들 주위로는 Msx2를 관찰할 수 없었다. 또한 FGF, Shh protein 역시 bead주위로 Msx2의 발현을 유도하지않았다. 흥미롭게도 BMP-2, -4 protein의 overexpression은 bead 주위로 Dlx5 유전자의 발현을 유도하였으나, 다른 $TGF{\beta}$ superfamily, FGF, Shh bead주위로는 Dlx5를 관찰할 수 없어, Msx2와 동일한 결과를 나타내었다 이 결과들을 종합해볼 때, Msx2와 Dlx5 유전자는 두개골과 두개봉합부의 성장발육과정에 중요한 역할을 담당하고 있으며, BMP signaling은 이 두 전사조절인자들을 조절하므로써 두개골의 골화과정과 두개봉합부의 형태발생 및 유지에 관여하고 있음을 제시해주고 있다. 특히 BMP signaling에 specific downstream gene인 Msx2 및 Dlx5의 발현양상의 차이는 골아세포의 분화시 이들 유전자가 각각의 독특한 기능을 가지고 있음을 시사해주고 있다.

  • PDF

유근피가 골세포의 mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen 및 collagennase-1에 미치는 영향 (Effects of Ulmus davidiana Planch(Ulmaceae) on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagennase-1 in bone cells)

  • 변유석;윤종화;황민섭;김갑성;조현석
    • Journal of Acupuncture Research
    • /
    • 제22권3호
    • /
    • pp.13-22
    • /
    • 2005
  • 손상된 조직의 보호와 항염증작용이 있는 것으로 알려진 유근피를 수액추출하여 골다공증의 치료에 응용 가능한가를 실험하였다. 이전의 실험에서 유근피 추출액이 파골세포를 함유한 장골세포의 치료를 통해 Cathepsin K를 억제하는 것을 확인 하였었다. 이를 통하여 유근피는 골다공증 치료에서 골재흡수억제제로 서의 prodrug의 역할을 할 수 있음을 시사하였다. 본 실험에서는 MC3T3-El pre-osteoblastic 세포조직을 이용하여 골화를 유발한 상태에서 유근피가 골아세포의 성장과 감작에 대한 것을 in vitro로 연구하였다. 이 결과 유근피는 용량과 시간의존적으로 ALP의 활동을 향상시킴으로써 강화작용이 있음을확인할 수 있었다. 투여량은 최소치 $50{\mu}g/m{\ell}$에서 최대치 $150{\mu}g/m{\ell}$에서 관찰되었다. $100{\mu}g/m{\ell}$ UD에서 bone morphogenetic protein-2의 향상을 관찰할 수 있었으며, MC3T3-El 세포내의 ALP mRNA농도역시 증가 하였다. $60{\mu}g/m{\ell}$ UD에서 Type I collagen mRNA에 대해서 오랜 배양 기간 동안 약간의 증가를 나타내었으나 15-20일 사이의 배양에서는 급격히 유전자 발현을 억제하는 것으로 나타났다. 이러한 결과는 골아 세포의 감작을 통해 유근피가 골대사에 영향을 미침을 시사하는 것이다. 그러므로 추후 연구를 통하여 일반적인 골대사질환에 유근피를 적극적으로 활용할 수 있음을 알 수 있었다.

  • PDF

Mouse의 치아 발육시 Runx2의 발현 양상 (EXPRESSION PATTERN OF RUNX2 IN MURINE TOOTH DEVELOPMENT)

  • 김태완;류현모;남순현;김영진;김현정
    • 대한소아치과학회지
    • /
    • 제31권4호
    • /
    • pp.651-658
    • /
    • 2004
  • Runx2는 runt gene family에 속하는 전사조절 인자로써 뼈의 형성과 골아세포의 분화에 중요한 역할을 담당하고 있다. Runx2-haploinsufficency는 쇄골의 저형성 및 두개 봉합의 지연을 특징으로 하는 쇄골두개 이형성증을 일으키며, 치아에 있어서는 법랑질의 저형성, 영구치 맹출지연 등을 보인다. 이에, 치아의 발육 및 맹출에 미치는 Runx2의 영향을 알아보기 위해 in situ hybridization 방법으로 태생 1, 4, 7, 14, 21일 된 쥐의 하악 및 제1대구치를 사용하여 실험을 실시하였다. Runx2-full length는 태생 1일과 4일에 치낭 및 그 주위조직에 보이지만 Runx2-typeII는 보이지 않았다 Runx2-full length는 태생 7일에 치관 교합면 부위의 법랑모세포에 발현하였고, 1주일 후인 태생 14일에는 백악법랑경계 상방의 치관인접면 법랑모세포에서 발현되었다. 이에 반해 Runx2-typeII는 법랑모세포에서 발현하지 않았다. 또한 태생 21일에서는 두 가지 이성질체가 모두 하악골에서 발현을 보였다 이런 결과를 종합해볼 때, Runx2-full length는 치아의 맹출과 연관이 있으며, 법랑모세포의 분화 및 이로 인한 법랑질형성에 영향을 주지만 Runx2-typeII는 하악골의 형성에만 영향을 미치는 것으로 사료된다.

  • PDF