• 제목/요약/키워드: Osmotic activity

Search Result 102, Processing Time 0.019 seconds

Studies for the osmotic parameter of liposomes

  • Yu, Byung-Sul;Seo, Weon-Gyo;Jeon, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.94-99
    • /
    • 1987
  • By using the former equation (8), we modified the equation which can show the dissimilar osmotic behavior of liposome with composition change. The slope of the new equation was presented as the ratio of osmotically active volume (V$_{act}$= ) to the total volume (V$_{totel}$= $_{acl}$+ V$_{dead}$ ; V$_{dead}$ is osmotically inactive volume) of loposomes, we defined is as a Z-value, which can elucidate the dissimilarity of the osmotic activity of multilamellar liposomes with the change of phospholipid composition and the differences of physicochemical properties of liposomes. Z-value was applied for studying the physico-chemical properties of liposomal membrane. The factor that affects on the Z-value was not the lipid concentration of liposome stock dispersion but the lipid composition of liposomal membrane. As the content of dicetylphosphate, the negative charged phospholipid, was increased, the osmotic activity, represented by Z-value, of multilamellar liposome was decreased. Using the hypertonic conditions (shrinking region), Z-value steadily increased and reached a maximum at 10 mole percent cholesterol with increasing the cholesterol content.

  • PDF

The Effects of Acute Osmotic Stress on Innate Immunity of Nile Tilapia (Oreochromis niloticus)

  • Choi, Sang-Hoon;Park, Kwan-Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • The effects of osmotic stress on the non-specific immune response of Nile tilapia, Oreochromis niloticus, were investigated. Osmoregulatory mechanism of tilapia has been studied, but less information is available about innate immune response of O. niloticus faced with hyperosmolality. Acute osmotic stress was elicited by transferring tilapia from freshwater (FW) to 24 psu seawater (SW). Non-specific immune parameters including lysozyme activities of plasma and head kidney (HK), alternative complement pathway (ACP) activity in plasma, phagocytic capacities of spleen and HK immune cells, and respiratory burst activity of immune cells in both HK and spleen were analyzed. Lysozyme activities were increased at 1 h and 30 h after transfer to SW, but decreased at 10 h after SW transfer. Conversely, ACP activity increased 10 h after SW transfer. Phagocytic capacity increased slightly at 1 h and 5 h after SW transfer, and respiratory burst activity showed an increase in superoxide release at 10 h after SW transfer. Taken together, these results indicate that the exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on cellular and humoral immune reactions.

Drinking Wateres Effects on Tyrosinase Activities (물리 Tyrosinase의 활성도에 미치는 영향)

  • Rhee, Byung-Chul;Lee, Zong-Liong;Lee, Duk-Soo;Kim, Yil
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.1-4
    • /
    • 1996
  • I have conducted two testings to find out which water is better for drinking water. First, I made 20 mM L-DOPA solutions by solving L-DOPA (3,4-Dihydroxyphenylalanine) in tap water, Waters' mineral water and reverse osmotic water. Then I measured activities after adding Tyrosinase (purifide enzyme, step 3), which was extracted from Salanum melongena(mad apple), in each L-DOPA solution. Second, I solved 0.1, 0.5 and 0.9% salt in each 20 mM L-DOPA distilled water to measure activity of each salt solution. The results of the testings are as follows: 1. 10 minutes after adding Salanum melongena(mad apple) tyrosinase in each L-DOPA solution, activity of Waters' mineral water was 0.867 tap water 0.777 and reverse osmotic water 0.742. 2. Activity of Waters' mineral water was higher than that of tap water by 10.4% and higher then reverse osmotic by 14.4%. 3. Activity of Waters' mineral water was much higher than that of 0.9% salt water by 41.8%. 4. The optimum pH of Salanum melongena (mad apple) tyrosinase is 9.0. Most enzymes working in the human metabolism are alkaline and body fluids' pH also alkaline. In conclusion, an alkaline water is believed better than an acidic water for drinking.

  • PDF

Bactericidal Activity of Grapefruit (Citrus paradisl) Seed Extract-Based Disinfectant

  • Han, Jae-Hong;Kim, Yong-Ung;Kim, Ki-Yeon;Hahm, Young-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.90-94
    • /
    • 2006
  • Bactericidal activity of grapefruit seed extract (GSE)-based disinfectant, as a safe disinfectant, was measured against five bacteria by Korean Food & Drug Administration (KFDA) dilution-neutralization method. GSE-based disinfectant showed a 99.9999% bactericidal activity against Escherichia coli ATCC 10536, Salmonella typhi ATCC 29629, Staphylococcus aureus ATCC 6538, Bacillus cereus ATCC 11778, and Listeria monocytogenes ATCC 1911 at the concentration of 2.15% GSE. It showed better bactericidal activity against Gram-negative bacteria of E. coli ATCC 10536 and S. typhi ATCC 29629 at lower concentration of GSE (0.43%). Based on the results, it was suggested that a possible bactericidal mechanism of GSE active ingredients was due to the abrupt osmotic shift during the bactericidal activity test by KFDA method.

Effects of Osmoprotectants on the Growth and Nitrogenase Activity of Rhizobium and Azospirillum under Osmotic Stress (질소고정균의 성장과 질소고정력에 대한 osmoprotectant의 영향)

  • Gal, Sang-Wan;Choi, Young-Ju
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • The Rhizobium and Azospirillum spp. were isolated from the root nodules of several leguminous plants and rhizosphere of various paddy rice varieties. The growth of the nitrogen-fixing strains isolated was largely inhibited in yeast extract-mannitol medium (AMA) containing 0.6 M NaCl. In response to osmotic stress, the nitrogen-fixing strains accumulate intracellular free glutamate. The growth and nitrogenase activity of Rhizobium and Azospirillum were increased by addition of osmoprotectants such as proline, glycine betaine, and glutamate during salt stress. Glycine betaine was the most effective among exogenous osmoprotectants tested. In the absence of sodium chloride, nitrogenase activity seem to be slightly decreased by the presence of the proline or glycine betaine. These results revealed that nitrogenase activity was repressed by fixed nitrogens such as proline or glycine betaine.

  • PDF

Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress (건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화)

  • Lee, Kyeong Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

Evaluation of biochemical and free radical scavengers of Digitaria exilis L. under osmotic stress

  • Oyinade A., David;Oluwole, Osonubi;Jacob, Oyetunji Olusola
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2019
  • Digitaria exilis L. is an under-utilized crop with high nutritional and medicinal values. It thrives in and is well-adapted to arid areas with low soil nutrients. Using biochemical markers, this study investigates the mechanisms by which D. exilis responds to osmotic stress. Three accessions Dinat Iburua (DIN), Jakah Iburua (JAK) and Jiw Iburua (JIW) were collected from National Cereal Research Institute, Niger State. Two accessions, NG/11/JD/061 and NG/11/JD/062 were also collected from National Centre for Genetic Resources and Biotechnology, Ibadan. Murashige and Skoog medium of approximately 1.2 L was supplemented with polyethylene glycol 6000 to create osmotic pressures of -9.29, -13.93, -20.13, -26.32, -32.51, and 0 MPa (control). Sterilized seeds were inoculated in the medium and placed in the growth room for 4 weeks. Proline accumulation was significantly high in all JAK plants under osmotic stress. Proline and ascorbate peroxidase (p<0.05) activities were directly correlated, thus reinforcing the survivability of JAK during stress. Catalase (CAT) activity was also significantly induced in JAK under osmotic stress, which synergistically improved its tolerability. As a result, >50% of OH-, H2O2, and NO radicals were scavenged. However, other accessions including DIN, NG061, NG062, and JIW showed variations in their responses to different levels of osmotic stress, although not significant. Therefore, JAK possesses a well-equipped free radical quenching system that is protected by the accumulation of the osmolyte proline; therefore, accession JAK is considered osmotolerant. CAT and superoxide dismutase activities were osmostabilized against oxidative stress by proline.

Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440

  • Lee, Yun-Ho;Yeom, Jin-Ki;Kang, Yoon-Suk;Kim, Ju-Hyun;Sung, Jung-Suk;Jeon, Che-Ok;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1504-1512
    • /
    • 2007
  • The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.

Isolation of Protoplasts from Tomato Root by Two-step Osmotic Treatment (토마토 뿌리조직으로부터 두 단계 삼투압 처리에 의한 원형질체의 분리)

  • Shin, Dae-Seop;Han, Min-Woo;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2004
  • In order to measure cellular physiological activity including ion channel activity, protoplasts were isolated from the root tissue of tomato plant. The general methods recommended were not efficient enough to make protoplasts from the root tissue. Among various conditions tested, we found that a two-step treatment of osmosis is very efficient for the isolation of protoplasts. In this procedure, root tissues were preincubated in a solution containing 300 mM sorbitol for 30 min. Then, they moved to the reaction solution containing 700 mM sorbitol as well as cell wall-digesting enzymes. The formation of protoplast was greatly increased by this method. In order to find the optimal condition of the two-step method, various conditions of pH, osmotic pressure, incubation time, and the concentrations of cell wall-digesting enzymes were tested. The yield of protoplast isolation was maximal at pH 5.0 after 2 hr incubation. Mixed enzymes of 3% cellulase, 1 % macerozyme, and 0.1 % pectolyase showed maximal protoplast isolation. The physiological activity of isolated protoplast evaluated by measuring the cellular ATPase activity was as high as that measured from the preparation of root tissue. The protoplasts isolated by this method were remained healthy up to 4 hrs which is enough time to measure the cellular physiological activity. These results show that the two-step treatment of osmotic pressure was successful to obtain high yield of healthy protoplast from tomato root tissue.

Short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings following sudden low salinity exposure (급격한 저염분 노출에 따른 참돔 Pagrus major 치어의 단기 행동반응 및 내성 한계에 관한 연구)

  • Sung Jin Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.495-506
    • /
    • 2021
  • In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.