• Title/Summary/Keyword: Osip Stream

Search Result 6, Processing Time 0.024 seconds

Fish Community Structures and Distribution Characteristics of Fisheries Resources in the Osip Stream and Wangpi Stream, Fishery Resources Protection Areas (내수면 수산자원보호구역 오십천 및 왕피천의 어류군집 구조 및 수산자원 분포특성)

  • Kyung-hoon Kim;Jin-wang Lee;Young-bin Jo;Jae-Hyun Lim;Ji-Woong Choi
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.57-69
    • /
    • 2023
  • The objectives of this study were to analyze the fish community structures and distribution characteristics of fisheries resources in the Osip Stream and Wangpi Stream, fishery resources protection areas. For the study, we conducted fish samplings four times in the two streams from April to October 2019. In Osip Stream and Wangpi Stream, we sampled 31 species and 29 species and the dominant species were Zacco platypus (28.6%) and Squalidus multimaculatus(41.7%), respectively. According to the life type of fish species, primary freshwater species were collected 18 species(58.1%) and 21 species(72.4%), and migration fishes were sampled 4 species (12.9%) and 6 species (20.7%) in Osip Stream and Wangpi Stream, respectively. Fisheries resources species showed high relative abundance in June, and the fish biomass was highest in October. As a results of comparing the previous studies with this study, both rivers showed high biodiversity and were found to maintain stable populations of fishes. According to analysis of tolerance guilds, the proportion of tolerant species, based on the number of individuals, was composed of 14.4% and 1.1% in Osip Stream and Wangpi Stream, respectively. This very low ratio of tolerant species confirmed that both streams have very good physiochemical environment conditions. From the above results, it was judged that the fishery resource protection areas of Osip Stream and Wangpi Stream have high ecological function and preservation value. For sustainable use and management of fishery resource protection areas of Osip Stream and Wangpi Stream, it is suggested that biological disturbance management, fish discharge projects considering environmental capacity, efforts to improve the habitat environment, and establishing a fishery resource protection areas management system were necessary as considerations.

The Effect of Grid Size in a Slope Analysis of Terrain by DEM for Hydrological Analysis (수문해석을 위한 DEM에 의한 지형의 경사도분석에서 격자크기의 영향)

  • 양인태;김연준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.221-230
    • /
    • 1997
  • In hydrology analysis, the result of a slope analysis for terrain have an very important effect on water quality and water quantity Recently, a slope analysis tend to use the digital elevation model rater than the traditional map sheet. But a terrain slope analysis by the digital elevation model depends on grid size of the digital elevation model. Hence the effect of a slope analysis by the digital elevation model is a important factor. In this study, therefor, in order to determine a hydrological parameter and a terrain parameter for simulation of the water quality and the hydrological property, we adapted two sample area that are the Nerin stream of the basin of the Soyang lake and a Osip stream of Samchuk, and its individual coverages are $640\;km^2$ and $33\;km^2$. Also to analyze the effect of grid size in the slope of a basin, we apply DEM changing a grid size respectively at intervals of 100 m from 100 m to 1.000m for the Nerin stream basin and at intervals of 10 m from 20 m to 300 m for the Osip stream basin.

  • PDF

Geomorphological Processes of Fluvial Terraces at the River Basins in the East Coast in the Southern Taebaek Mountain Range (태백산맥 남부 동해안 하천 유역의 하안단구 지형 형성)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • This study estimates geomorphological processes of fluvial terraces by uplifts and bedrock features, by the analyses of topography, distribution, formation age and incision rate of fluvial terraces using Gwang-cheon River in Uljin, Namdae-cheon River in Pyeonghae and Osip-cheon River in Yeongdeok located in the southern Taebaek Mountain Range. The tectonic and climatic terraces I in the upper reaches of Gwang-cheon River with an altitude from riverbed of 9~12m indicate the formation age of MIS 2 with a incision rate of 0.40m/ka. However, the tectonic and climatic terraces I in the upper reaches of Osip-cheon River with an altitude from riverbed of 7~10m show the formation age of MIS 3 with an incision rate of 0.10m/ka. These results suggest that the uplift rate in the Gwang-cheon River basin is likely to be higher than that in the Osip-cheon River basin. Unlike the lower reaches of Osip-cheon River, the thalassostatic terraces are not found in the lower reaches of Gwang-cheon River, because the basin has low maintainable ability of landforms in river valley due to high uplift rate and bedrock properties resistant to weathering and erosion. On the other hand, the lowest tectonic and climatic terraces in the study areas indicate different formative ages and the terraces during the cooling stage in interglacial as well as during interstadial are also found. Therefore, this study suggests that chronological method for fluvial terrace by the previous developmental model of climatic terrace should be reconsidered.

  • PDF

Comparison of Growth and Spawning Characteristics of Ayu, Plecoglossus altivelis in Seomjin River and Streams Flowing to the East Sea, Korea (동해로 유입하는 하천과 섬진강에 서식하는 은어 Plecoglossus altivelis의 성장 및 산란 특징의 비교)

  • Lee, Wan-Ok;Yoon, Seung-Woon;Kim, Jong-Hwa;Kim, Dae-Hee
    • Korean Journal of Ichthyology
    • /
    • v.20 no.3
    • /
    • pp.179-189
    • /
    • 2008
  • Standard length (SL) and gonadosomatic index (GSI) of Plecoglossus altivelis were investigated from March to October 2007 in Seomjin River and streams flowing to the East Sea, Korea. Water temperatures were $17{\sim}23^{\circ}C$ during the spawning season, which ran from late September to early November in Seomjin River and early August to mid-October in streams flowing to the East Sea. The GSI and HSI variations of ayu population in Seomjin River increased earlier than in populations in streams flowing to the East Sea with similar variation in water temperature. Histological study of ovaries showed that the start of spawning of P. altivelis in Seomjin River was later than in streams flowing to the East Sea. Overall, fecundity increased with increase in SL and not by site specificity. The SL of P. altivelis increased as the river scale increased. Mean length of specimens from Seomjin River (river length: 223.86 km, river area: $4,911.89km^2$) was $194{\pm}15.3mm$, from Osip Stream (55.76 km, $393.78km^2$) $185{\pm}15.5mm$, from Yangyang Namdae Stream (54 km, $474.08km^2$) $142{\pm}11.8mm$, and from Joosoo Stream (21.1 km, $141.47km^2$) $136{\pm}16.7 mm$.

Comparative Analysis of Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of White, Reddish Brown and Mixed Precipitates Occurring at Osip Stream Drainage, Gangwondo, South Korea (강원도 오십천 수계에 분포하는 백색침전물, 적갈색침전물 및 혼합침전물의 중금속 오염, 광물조성 및 분광학적 특성의 비교분석)

  • Lim, Jeong Hwa;Yu, Jaehyung;Shin, Ji Hye;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.13-28
    • /
    • 2019
  • This study analyzed precipitation environment, heavy metal contamination, and mineral composition of white, reddish brown and mixed precipitates occurring at the Osip stream drainage, Gangwondo. Furthermore, spectral characteristics of the precipitates associated with heavy metal contamination and mineral composition was investigated based on spectroscopic analysis. The pH range of the precipitates was 4.43-6.91 for white precipitates, 7.74-7.94 for reddish brown precipitates, and 7.59-7.9 for the mixed precipitates, respectively. XRF analysis revealed that these precipitates were contaminated with Ni, Cu, Zn, and As. The white precipitates showed high Al concentration compared to reddish brown precipitates as much as 3.3 times, and the reddish brown precipitates showed high Fe concentration compared to white precipitates as much as 15 times. XRD analysis identified that the mineral composition of the white participates was aluminocoquimbite, gibbsite, quartz, saponite, and illite, and that of reddish brown precipitates was aluminum isopropoxide, kaolinite, goethite, dolomite, pyrophyllite, magnetite, quartz, calcite, pyrope. The mineral composition of the mixed precipitates was quartz, albite, and calcite. The spectral characteristics of the precipitates was manifested by gibbsite, saponite, illite for white precipitates, goethite, kaolinite, pyrophyllite for reddish brown precipitates, and albite for the mixed precipitates, respectively. The spectral reflectance of the precipitates decreased with increase in heavy metal contamination, and absorption depth of the precipitates indicated that the heavy metal ions were adsorbed to saponite and illite for white precipitates, and goethite and magnetite for reddish brown precipitates.

Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of Reddish Brown Precipitation Occurring at Osip Stream Drainage, Gangwon-do (강원도 오십천 수계에서 발생하는 적갈색침전물의 중금속 오염, 광물조성 및 분광학적 특성)

  • Lim, Jeong Hwa;Yu, Jaehyung;Bae, Sungji;Koh, Sang-Mo;Park, Gyesoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.75-86
    • /
    • 2018
  • This study analyzed precipitation environment, heavy metal concentration, mineral composition, and spectral characteristics associated with heavy metal concentration and mineral composition for the reddish brown precipitates occurred in the drainage of Dogye mining station. The pH of the reddish brown precipitates ranges from 7.59 to 7.94 resulting neutral. XRF analysis reveals that the precipitates has high Fe concentration, and contaminated with Ni, Cu, and Zn. Dolomite, calcite, goethite, magnetite, kaolinite, pyrophyllite, quartz and aluminum isopropoxide were identified based on XRD analysis. As a result of spectral analysis associated with heavy metal contamination, visible reflectance increases and infrared reflectance decreases with a increase in heavy metal concentration. The spectral characteristics of the reddish brown precipitates is turned out to be manifested by goethite, magnetite, kaolinite, pyrophyllite and aluminum isopropoxide.