• Title/Summary/Keyword: Oscillatory behavior

Search Result 140, Processing Time 0.028 seconds

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0

Rheological Behavior of Viscoelastic Semi-Solid Ointment Base (Vaseline) in Oscillatory Shear Flow Fields (진동전단유동장에서 점탄성 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Chang, Gap-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Using a Rheometries Dynamic Analyzer (RDA II), the dynamic viscoelastic properties of a semi-solid ointment base (vaseline) in large amplitude oscillatory shear flow fields were measured over a temperature range of $25{\sim}45^{\circ}C$ and the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a wide range of angular frequencies. In this article, the nonlinear viscoelastic behavior was reported from the experimentally obtained data and the effect of temperature on this behavior was discussed in detail. In addition, the angular frequency and temperature dependencies of a linear viscoelastic behavior were explained. Finally, the applicability of a time-temperature superposition principle originally developed for polymeric materials was examined using a shift factor. Main results obtained from this study can be summarized as follows : (1) At very small strain amplitude region, vaseline shows a linear viscoelastic behavior independent of the imposed deformation magnitudes. Above a critical strain amplitude $({\gamma}_{0}=0.1{\sim}0.2%)$, however, vaseline exhibits a nonlinear viscoelastic behavior ; indicating that both the storage modulus and dynamic viscosity are sharply decreased with increasing deformation magnitude. (2) In large amplitude oscillatory shear flow fields, an elastic behavior (storage modulus) has a stronger strain amplitude dependence and begins to show a nonlinear behavior at a smaller strain amplitude region than does a viscous behavior (dynamic viscosity). (3) In small amplitude oscillatory shear flow fields, the storage modulus as well as the loss modulus are continuously increased as an increase in angular frequency and an elastic nature is always superior to a viscous behavior over a wide range of angular frequencies. (4) A time-temperature superposition principle can successfully be applicable to vaseline. This finding allows us to estimate the dynamic viscoelastic behavior of vaseline over an extraordinarily extended range (11 decades) of angular frequencies inaccessible from the experimentally measured range (4 decades).

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

  • Choi, Myoungsung;Park, Kyoungsoo;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.65-74
    • /
    • 2016
  • During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension were examined by using dynamic oscillatory measurements. Cement paste is assumed to be a constituent material of the lubrication layer and ten cases of mixing design are employed by changing the proportions of mineral admixtures. The relationship between the yield stress obtained from the steady shear test and the dynamic modulus resulted from the oscillatory shear measurement was derived and the implications of the correlation are discussed. Moreover, based on the investigation of the viscoelastic properties with oscillatory measurements, the initial behavior of pumped concrete was analyzed systematically.

EFFICIENT SIMULATION AND SCALING OF OSCILLATORY IMPINGING JETS (진동하는 충돌 제트의 스케일링과 효율적인 수치 모사)

  • Kim S. I.;Park S. O.;Hong S. K.;Lee K. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.32-38
    • /
    • 2005
  • Present study simulates oscillatory supersonic impinging jet flows using the axisymmetric Navier-Stokes code. To capture the salient features of flow oscillation and overcome the divergence during the initial transient period, several tests have been conducted for the grid and time step sizes. The results also show that the effects of the inlet flow condition at the nozzle exit and turbulence on the oscillatory behavior of supersonic impinging jets are negligible. Frequencies of the surface pressure oscillation obtained by the selected numerical method are in good accord with the measured impinging tones for various cases of nozzle-to-plate distance. Two seemingly different staging behaviors with nozzle-to-plate distance and nozzle pressure variations are found to correlate well if the frequency and distance are normalized by the length of the first shock cell.

Large amplitude oscillatory shear behavior of the network model for associating polymeric systems

  • Ahn, Kyung-Hyun;Kim, Seung-Ha;Sim, Hoon-Goo;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 2002
  • To understand the large amplitude oscillatory shear (LAOS) behavior of complex fluids, we have investigated the flow behavior of a network model in the LAOS environment. We applied the LAOS flow to the model proposed by Vaccaro and Marrucci (2000), which was originally developed to describe the system of associating telechelic polymers. The model was found to predict at least three different types of LAOS behavior; strain thinning (G' and G" decreasing), strong strain overshoot (G' and G" increasing followed by decreasing), and weak strain overshoot (G' decreasing, G" increasing followed by decreasing). The overshoot behavior in the strain sweep test, which il often observed in some complex fluid systems with little explanation, could be explained in terms of the model parameters, or in terms of the overall balance between the creation and loss rates of the network junctions, which are continually created and destroyed due to thermal and flow energy. This model does not predict strain hardening behavior because of the finitely extensible nonlinear elastic (FENE) type nonlinear effect of loss rate. However, the model predicts the LAOS behavior of most of the complex fluids observed in the experiments.he experiments.

OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF SECOND ORDER NONLINEAR DIFFERENTIAL INEQUALITY WITH PERTURBATION

  • Zhang, Quanxin;Song, Xia
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.475-483
    • /
    • 2011
  • In this paper, we study the oscillatory and asymptotic behavior of a class of second order nonlinear differential inequality with perturbation and establish several theorems by using classification and analysis, which develop and generalize some known results.

Comparison and Dynamic Behavior of Moving-Coil Linear Oscillatory Actuator with/without Mechanical Spring driven by Rectangular Voltage Source

  • Choi, Jang-Young;Kang, Han-Bit
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.394-397
    • /
    • 2014
  • This paper deals with the comparison and dynamic behavior of a moving-coil linear oscillatory actuator (MCLOA) with/without a mechanical spring. On the basis of a dynamic simulation model, the dynamic characteristics such as a current and a stroke of the MCLOA without the spring are predicted for various values of frequency. And then, dynamic test results are given to confirm the dynamic simulations. Finally, this paper describes the influence of the spring on the dynamic behavior of the MCLOA from the dynamic experiments of the MCLOA with/without the spring.

Oscillatory behavior of microglial cells (미세아교세포의 진동 거동의 연구)

  • Park, Eunyoung;Cho, Youngbin;Ko, Ung Hyun;Park, Jin-Sung;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2021
  • Cells regulate their shapes and motility by sensing the cues from the internal and external microenvironment. Under different circumstances, microglia, the brain resident immune cells, undergo dynamic phenotypic changes, one of which is a remarkable periodic oscillatory migration in vitro. However, very little is known about the kinematic and dynamic perspectives of this oscillatory behavior. In this study, we tracked the changes in cell morphology and nuclear displacement, and visualized the forces using traction force microscopy (TFM). By correlation analyses, we confirmed that the lamellipodia formation preceded the nuclear translocation. Moreover, traction, developed following lamellipodia formation, was found to be localized and fluctuated at two ends of the oscillating cells. Taken together, our results imply that oscillatory microglial cells feature a viscoelastic migration, which will contribute to the field of cell mechanics.

Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance (노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성)

  • Kim S. I.;Park S. O.;Lee K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF