• Title/Summary/Keyword: Oscillatory Instability

Search Result 43, Processing Time 0.027 seconds

Oscillatory Instability of Low Strain Rate Edge Flame (저신장율 에지 화염의 진동 불안정성)

  • Kim Kang-Tae;Park June-Sung;Kim Jeong-Soo;Oh Chang-Bo;Keel Sang-In;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

Radiation-Induced Oscillatory Instability in Diffusion Flames (복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구)

  • Sohn, Chae Hoon;Kim, Jong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames (메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

On the Origin of Oscillatory Instabilities in Diffusion Flames (확산화염의 진동불안성의 기원에 대해서)

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

Natural Convection of Low-Prandtl-Number Fluids in a Narrow Horizontal Annulus (좁은 수평 환형공간에서의 낮은 Prandtl 수 유체의 자연 대류)

  • Yoo, Joo-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1784-1795
    • /
    • 1998
  • Natural convection of low Prandtl number fluids with $Pr{\leq}0.2$ in a narrow horizontal annulus is numerically investigated. For $Pr{\leq}0.2$, hydrodynamic instability induces oscillatory multicellular flows consisting of multiple like-rotating cells. For a fluid with $Pr{\approx}0$, the region in which instability of conduction regime first forms is near the vertical section of annulus, and the multiple cells are distributed uniformly in the lower and upper regions of annulus. As Pr increases, however, the cells are shifted upwards. The like-rotating cells drift downward, as time goes on, and the speed of travel increases with increase of Pr. For a fluid with Pr=0.1, a flow with period-4 solution is observed between chaotic states.

Optimization of automatic power control of pulsed reactor IBR-2M in the presence of instability

  • Pepelyshev, Yu.N.;Davaasuren, Sumkhuu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2877-2882
    • /
    • 2022
  • The paper presents the main results of computational and experimental optimization of the automatic power control system (AC) of the IBR-2M pulsed reactor in the presence of a high level of oscillatory instability. Optimization of the parameters of the AC made it possible to significantly reduce the influence of random and deterministic oscillations of reactivity on the noise of the pulse energy, as well as to sharply reduce the manifestation of the oscillatory instability of the reactor. As a result, the safety and reliability of operation of the reactor has increased substantially.

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.