• Title/Summary/Keyword: Oscillating water column plant

Search Result 14, Processing Time 0.022 seconds

Wave deformation due to oscillating water column plant (OWC 플랜트 주위 파랑변형)

  • 김용직;김동준;윤길수;류청로;홍석원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • Wave deformation due to Oscillating water column (OWC) plant was studied. To solve this problem, three dimensional numerical method based on Improved Green integral equation was applied. Method condition was considered as well as fixed condition and freely floating condition. From the calculation results, main characteriatic of wave deformation due to OWC plant were discussed. Also, some calculations for the floating barge were performed to confirm the validity of numerical solution of the method.

  • PDF

Analysis for Nonlinear Turbine Effect of Inclined OWC Wave Energy Converter (경사형 진동수주 파력발전장치의 비선형 터빈효과의 분석)

  • Kim, J.S.;Nam, B.W.;Park, S.W.;Kim, K.H.;Shin, S.H.;Hong, K.Y.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.59-60
    • /
    • 2018
  • The oscillating-water-column wave energy converter represents the complex physical characteristics associated with the water column, turbines, generator, and power converter. This study focuses on the derivation of the physical relationship between the water column and turbine based on the 1/ 4 scale model test. The aerodynamic characteristics of the OWC ducted turbine were simulated using an orifice. The turbine effect, a key element in the OWC-chamber performance evaluation, can be represented by the flow rate and pressure drop through the orifice. The turbine effect of OWC-WEC was confirmed to have a non-linear relationship from the measured flow rate and pressure drop in the model test.

  • PDF

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

Prediction of Wave Energy Absorption Efficiency and Wave Loads of a Three-Dimensional Bottom-Mounted OWC Wave Power Device (착저식 OWC 파력발전장치의 파에너지 흡수효율 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The wave energy absorption efficiency and the first-order and the time-mean second-order wave loads of a three-dimensional bottom-mounted oscillating water column (OWC) chamber structure are studied. The potential problem is solved by making use of a hybrid Green integral equation associated with the finite-waterdepth free-surface Green function outside a twin chamber and the Rankine Green function inside taking account of the fluctuating air pressure inside the chamber. Numerical results of the primary wave energy converting efficiency and the oscillating and steady wave loads of a three-dimensional bottom-mounted OWC pilot plant have been presented.

Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant (차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

A Design and Analysis of Pressure Predictive Model for Oscillating Water Column Wave Energy Converters Based on Machine Learning (진동수주 파력발전장치를 위한 머신러닝 기반 압력 예측모델 설계 및 분석)

  • Seo, Dong-Woo;Huh, Taesang;Kim, Myungil;Oh, Jae-Won;Cho, Su-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.672-682
    • /
    • 2020
  • The Korea Nowadays, which is research on digital twin technology for efficient operation in various industrial/manufacturing sites, is being actively conducted, and gradual depletion of fossil fuels and environmental pollution issues require new renewable/eco-friendly power generation methods, such as wave power plants. In wave power generation, however, which generates electricity from the energy of waves, it is very important to understand and predict the amount of power generation and operational efficiency factors, such as breakdown, because these are closely related by wave energy with high variability. Therefore, it is necessary to derive a meaningful correlation between highly volatile data, such as wave height data and sensor data in an oscillating water column (OWC) chamber. Secondly, the methodological study, which can predict the desired information, should be conducted by learning the prediction situation with the extracted data based on the derived correlation. This study designed a workflow-based training model using a machine learning framework to predict the pressure of the OWC. In addition, the validity of the pressure prediction analysis was verified through a verification and evaluation dataset using an IoT sensor data to enable smart operation and maintenance with the digital twin of the wave generation system.

Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter (부유식 진동수주형 파력발전기(BBDB)의 유체 동역학적 성능 실험 연구)

  • Kim, Sung-Jae;Kwon, Jinseong;Kim, Jun-Dong;Koo, Weoncheol;Shin, Sungwon;Kim, Kyuhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.53-58
    • /
    • 2012
  • An experimental study on the hydrodynamic performance of a backward bent duct buoy (BBDB) was performed in a 2D wave tank. The BBDB is one of the promising oscillating water column (OWC) types of floating wave energy converters. Two different corner-shaped BBDBs (sharp-corner and round-corner) were used to measure the maximum chamber surface elevations and body motions for various incident wave conditions, and their hydrodynamic characteristics were compared. In order to investigate the effect of the pneumatic pressure inside the chamber, the heave and pitch angle interacted with elevations were compared for both open chamber and partially open chamber BBDBs. From the comparison study, the deviation in the chamber surface elevations between the two shapes of BBDBs was found to be significant near the resonance period, which may be explained by viscous energy loss. It was also found that the pneumatic pressure noticeably affected the chamber surface elevation and body motions.

Study of Nearshore OWC Wave Power Absorbing Breakwater (연안고정식 파력발전 겸 OWC 방파제 성능연구)

  • Hong, Do-Chun;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • The wave power absorbing performance of a bottom-mounted oscillating water column (OWC) chamber structure is studied. The potential problem inside the chamber is solved by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function taking account of fluctuating air pressure in the air chamber. The absorbed wave power, wave elevation inside the chamber, reflection coefficient and wave loads are calculated for various values of a parameter related to the fluctuating air pressure. The present methods can also be used for the design of a OWC breakwater which can absorb and reflect the incoming wave energy at the same time.

  • PDF

Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber (공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석)

  • Hong, Sa-Young;Kyoung, Jo-Hyun;Kim, Byoung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.