• 제목/요약/키워드: Oscillating heat pipe(진동형 히트 파이프)

검색결과 18건 처리시간 0.03초

진동형 히트 파이프를 이용한 매스 콘크리트의 겨울철 수화열 제어 특성 (Characteristics of Hydration Heat Control of Mass Concrete using Pulsating Heat Pipe in the Winter Season)

  • 양태진;김정훈;염치선;김명식;김종수
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.169-174
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure, the heat of hydration may cause serious thermal cracking. This paper reports results of hydration heat control in mass concrete using the oscillating heat pipe. There were three RC box molds ($1.2m{\times}1.8m{\times}2.4m$) which were different from each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of 10 turns of serpentine type copper pipe whose outer and inner diameters were 4 and 2.8 mm respectively. The working fluid was R-22 and charging ratio was 40% by volume. The temperature of the concrete core was approximately $55^{\circ}C$ in the winter without pulsating heat pipe. For a concrete with pulsating heat pipe, however, the temperature difference with the outdoor one reduced up to $12^{\circ}C$. The index figure of crack was varied from 0.75 to 1.38.

진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구 (An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe)

  • 백동일;김명식;이문식;김강민;염치선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

열원 냉각용 루프 써모사이폰의 작동 특성 (Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling)

  • 최두성;송태호
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

우주기반기술 검증용 극초소형 위성 STEP Cube Lab.의 시스템 개념설계 (Preliminary System Design of STEP Cube Lab. for Verification of Fundamental Space Technology)

  • 권성철;정현모;하헌우;한성현;이명재;전수현;박태용;강수진;채봉건;장수은;오현웅;한상혁;최기혁
    • 한국항공우주학회지
    • /
    • 제42권5호
    • /
    • pp.430-436
    • /
    • 2014
  • 본 논문에서 제안한 우주기반기술 검증용 극초소형 위성의 명칭은 STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project)이며, 주요임무는 가변 방사율 열제어기, 형상기억합금 진동 절연기, 진동형 히트파이프, MEMS 기반 고체 추력기와 같이 국내 산학연에서 기 수행된 우주핵심기술을 발굴 및 탑재하여 궤도검증을 실시하는 것이다. 또한, 배열형 집광렌즈가 적용된 고효율 집광형 태양전력시스템과 열선절단방식이 적용되어 높은 체결력과 적용방법에 따라 복수구조물의 구속 및 분리가 가능한 무충격 구속분리장치를 주요 탑재체로 개발하여 궤도 검증을 실시예정이다. 본 논문에서는 상기 탑재체의 궤도 검증을 임무목적으로 하는 STEP Cube Lab.의 체계 및 부체계 개념설계를 통해 임무의 구현 가능성을 검토하였다.