• Title/Summary/Keyword: Oscillating Motion

Search Result 169, Processing Time 0.021 seconds

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.176-182
    • /
    • 2006
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams (축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증)

  • Kim, Sung-Do;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.708-713
    • /
    • 2005
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper. Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. Stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

  • PDF

Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion (면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

Heat transfer characteristics by an oscillating flow in a tube with a regenerator (재생기가 포함된 원관내 왕복유동에 의한 열전달 특성)

  • Lee, Geon-Tae;Gang, Byeong-Ha;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.428-439
    • /
    • 1998
  • Fluid flow and heat transfer have been numerically investigated for an oscillating flow in a tube with a regenerator. The regenerator is placed between hot and cold spaces which are heated and cooled at uniform temperature. An oscillating flow is generated by the piston motion at both ends of a tube. The time dependent, two-dimensional Navier-Stokes equations and energy equation are solved by using the finite-volume and moving grid method. The regenerator is adopted as Brinkmann-Forchheimer extended Darcy model. Numerical results are obtained for the flow and temperature fields, and described the effects of the oscillating frequency and amplitude ratio by the piston motion as well as the aspect ratio. The numerical results obtained indicate that the heat transfer between the tube wall and oscillating flow is increased as the oscillating frequency, amplitude ratio and the aspect ratio are increased.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • Kim, Na-Eun;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF

Dynamic Stability Analysis of Axially Oscillating Cantilever Beams with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.718-723
    • /
    • 2000
  • Dynamic stability of an axially oscillating cantilever beam with a concentrated mass is investigated in this paper. The equations of motion are derived and the derived equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Under certain conditions of the frequency and the amplitude of oscillating motion, parametric instabilities may occur. The multiple scale perturbation method is employed to obtain the stability analysis results. It is found that the system stability varies with the magnitude or the location of the concentrated mass. Instability increases as the concentrated mass approaches to the free-end or its magnitude increases.

  • PDF

Dynamic stability analysis of axially oscillating cantilever beams (축방향 왕복운동을 하는 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.469-474
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

Reduced Frequency Effects on the Near-Wake of an Oscillating Elliptic Airfoil

  • Chang, Jo-Won;Eun, Hee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1234-1245
    • /
    • 2003
  • An experimental study was carried out to investigate the reduced frequency effect on the near-wake of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched around the center of the chord between -5$^{\circ}$and +25$^{\circ}$angles of attack at an airspeed of 3.4 m/s. The chord Reynolds number and reduced frequencies were 3.3 ${\times}$10$^4$, and 0.1, 0.7, respectively Phase-averaged axial velocity and turbulent intensity profiles are presented to show the reduced frequency effects on the near-wake behind the airfoil oscillating In pitch. Axial velocity defects in the near-wake region have a tendency to increase in response to a reduced frequency during pitch up motion, whereas it tends to decrease during pitch down motion at a positive angle of attack. Turbulent intensity at positive angles of attack during the pitch up motion decreased in response to a reduced frequency, whereas turbulent intensity during the pitch down motion varies considerably with downstream stations. Although the true instantaneous angle of attack compensated for a phase-lag is large, the wake thickness of an oscillating airfoil is not always large because of laminar or turbulent separation.

Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF