• Title/Summary/Keyword: OsIDS1

Search Result 3, Processing Time 0.017 seconds

Histone Deacetylase 701 (HDT701) Induces Flowering in Rice by Modulating Expression of OsIDS1

  • Cho, Lae-Hyeon;Yoon, Jinmi;Wai, Antt Htet;An, Gynheung
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.665-675
    • /
    • 2018
  • Rice is a facultative short-day (SD) plant in which flowering is induced under SD conditions or by other environmental factors and internal genetic programs. Overexpression of Histone Deacetylase 701 (HDT701) accelerates flowering in hybrid rice. In this study, mutants defective in HDT701 flowered late under both SD and long-day conditions. Expression levels of florigens Heading date 3a (Hd3a) and Rice Flowering Locus T1 (RFT1), and their immediate upstream floral activator Early heading date 1 (Ehd1), were significantly decreased in the hdt701 mutants, indicating that HDT701 functions upstream of Ehd1 in controlling flowering time. Transcript levels of OsINDETERMINATE SPIKELET 1 (OsIDS1), an upstream repressor of Ehd1, were significantly increased in the mutants while those of OsGI and Hd1 were reduced. Chromatin-immunoprecipitation assays revealed that HDT701 directly binds to the promoter region of OsIDS1. These results suggest that HDT701 induces flowering by suppressing OsIDS1.

Secure OS 기반의 지능형 다단계 정보보호시스템

  • 홍기융;은유진;김재명;이규호
    • Korea Information Processing Society Review
    • /
    • v.10 no.2
    • /
    • pp.58-63
    • /
    • 2003
  • 본 고에서는 1.25 인터넷 대란과 같은 버퍼오버플로우를 이용해 침투하는 인터넷 웜 및 DOS (Denial of Service) 공격을 Secure OS(보안운영체제), IDS(Intrusion Detection System : 침입탐지시스템), Scanner(취약성진단도구), Firewall(침입차단시스템)의 지능형 상호연동 스킴을 이용해, 근본적인 대응이 가능한 지능형 다단계 정보보호체계를 제시하였다. 본 고에서 제시한 정보보호대응책은 고도로 지능화하고 있는 인터넷 웜 및 DoS(Denial of Service 서비스거부) 공격을 미연에 예방하고, 실시간으로 대응할 수 있는 시스템이 될 것이다.

  • PDF

Implementation and Evaluation of Multi-level Secure Linux (다중등급 보안 리눅스 구현 및 시험평가)

  • 손형길;박태규;이금석
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2003
  • A current firewall or IDS (intrusion detection system) of the network level suffers from many vulnerabilities in internal computing servers. For a secure Linux implementation using system call hooking, this paper defines two requirements such as the multi-level security function of TCSEC B1 and a prevention of hacking attacks. This paper evaluates the secure Linux implemented in terms of the mandatory access control, anti-hacking and performance overhead, and thus shows the security, stability and availability of the multi-level secure Linux. At the kernel level this system protects various hacking attacks such as using Setuid programs, inserting back-door and via-attacks. The performance degradation is an average 1.18% less than other secure OS product.