• 제목/요약/키워드: Orthotropic Material

검색결과 285건 처리시간 0.024초

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

등가 물성 평가를 이용한 골판지의 물성치 (The Mechanical Properties of Corrugated Cardboard using Equivalent Evaluation)

  • 권경영;정종윤
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.157-164
    • /
    • 2014
  • The usage of corrugated cardboard for packing material is increasing in these days because it is light and easy to manufacture packing boxes. However, the structure analysis of packing boxes, made of cardboard, is not well carried. The reason can be deduced that its mechanical properties for structure analysis are not well known. The cardboards are made different shapes with various types of raw materials that are paper-based compound. In addition, the cardboards are considered to be orthotropic material. This research finds mechanical properties of triple layered cardboard which is composed of outer liner and inner liner. The moduli of elasticity and of shear for liners are found from tension test and T-Peel test. The mechanical properties of the cardboard are calculated using the super position method and equivalent evaluation method.

Finite element modeling of reinforced and prestressed concrete panels under far-field blast loads using a smeared crack approach

  • Andac Lulec;Vahid Sadeghian;Frank J. Vecchio
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.725-738
    • /
    • 2024
  • This study presents a macro-modeling procedure for nonlinear finite element analysis of reinforced and prestressed concrete panels under blast loading. The analysis procedure treats cracked concrete as an orthotropic material based on a smeared rotating crack model within the context of total-load secant stiffness-based formulation. A direct time integration method compatible with the analysis formulation is adapted to solve the dynamic equation of motion. Considerations are made to account for strain rate effects. The analysis procedure is verified by modeling 14 blast tests from various sources reported in the literature including a blast simulation contest. The analysis results are compared against those obtained from experiments, simplified single-degree-of-freedom (SDOF) methods, and sophisticated hydrocodes. It is demonstrated that the smeared crack macro-modeling approach is a viable alternative analysis procedure that gives more information about the structural behavior than SDOF methods, but does not require detailed micro-modeling and extensive material characterization typically needed with hydrocodes.

성능향상된 RC 바닥판의 계면파괴 해석 (Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks)

  • 오홍섭;심종성
    • 콘크리트학회논문집
    • /
    • 제14권5호
    • /
    • pp.668-676
    • /
    • 2002
  • 바닥판은 주형 또는 하부구조 등에 비하여 손상이 많이 발생하기 때문에 탄소섬유쉬트와 같은 섬유보강재를 사용하여 손상된 바닥판의 내하력을 향상시키기 위한 성능향상 공법의 적용이 증가하고 있다. 그러나 섬유보강재와 콘크리트사이의 계면을 에폭시를 사용하여 일체화시키는 외부착공법의 특성상 하중위치 및 보강방법 등에 따라 보강재가 조기에 박리되는 현상이 발생할 수 있으며, 특히 이방향 균열의 성장에 의하여 손상이 진행되는 바닥판의 경우에는 보강된 보 구조물에서 일반적으로 발생하는 단부박리현상보다는 균열폭의 증가에 의하여 발생하는 계면박리 현상이 많이 발생하게 된다. 본 연구에서는 성능향상된 바닥판의 계면박리를 해석하기 위하여 균열폭과 부착응력의 관계로부터 계면박리가 발생하는 임계부착응력과 임계 균열을 산정할 수 있는 이론적인 해석식을 제안하였다. 또한 보강된 바닥판 시험체에 대한 정적 시험결과와의 비교를 통하여 제안식의 타당성을 검증하였다.

방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성 (Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials)

  • 김성준
    • Composites Research
    • /
    • 제16권5호
    • /
    • pp.39-44
    • /
    • 2003
  • 복합재료에 삽입된 점탄성 재료는 복합재구조물의 감쇠물성을 크게 증가시킨다. 일반적으로 점탄성 재료는 등방성이므로 모든 방향의 감쇠물성이 동일하다. 최근 재료의 방향에 따라 감쇠물성이 변하는 이방성 감쇠재료의 개발이 요구되고 있다. 이방성 감쇠재료는 점탄성 재료 내부에 얇은 섬유를 삽입하여 제작한다. 삽입된 섬유는 댐핑재료의 강성에 큰 영향을 주며 강성은 고전 적층판 이론을 따르게 된다. 본 논문에서는 Ni와 Adams의 이론을 이용하여 손실계수를 평가하였다. 그리고 방향성 있는 감쇠재료의 영향을 평가하기 위해 저속충격 거동해석을 수행하였다. 해석결과로부터 방향성 있는 감쇠재료는 복합적층판의 진동 및 감쇠특성에 큰 영향을 줌을 보였다

종이 앵글 포장재의 재료역학적 특성과 유한요소해석 (Finite Element Analysis and Material Mechanics of Paper Angle)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • 제30권6호통권113호
    • /
    • pp.347-353
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector, But, in the future, paper angle will be applied to package design of heavy product such as strength reinforcement or unit load system (ULS). Therefore. understanding of buckling behavior fur angle itself, compression strength and quality standard are required. The objectives of this study were to characterize the buckling behavior by theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, as applied load level was bigger and/or the length of angle was longer, incresing rate of buckling of asymmetric paper angle was higher than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia significantly increased as the extent of asymmetric angle increased, and buckling orientation of angle was open- direction near the small web. Incresing rate of maximum compression strength (MCS) for thickness of angle decreased as the web size increased in symmetric angle. MCS of asymmetric angle of 43${\times}$57 and 33${\times}$67 decreased $15{\~}18\%$ and $65{\~}78\%$, and change of buckling increased $12{\~}13\%$ and $62{\~}66\%$, respectively.

동적 거동 시뮬레이션을 위한 종이의 물성치 추정 (Material Property Estimation of Paper for Dynamic Behavior Simulation)

  • 이근표;최진환;이순걸
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.

기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성 (Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity)

  • 김기태;박범희;김다진;한상을
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

이종재료의 진전 계면 균열에 대한 동적 광탄성 실험법 (Dynamic Photoelastic Experimental Method for Propagating Interfacial Crack of Bimaterials)

  • 신동철;황재석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.292-297
    • /
    • 2000
  • In this research, the dynamic photoelastic experimental hybrid method for bimaterial is introduced. Dynamic biaxial loading device is developed, its strain rate is 31.637 s-1 and its maximum impact load is 20 ton. Manufactured methods for model of the dynamic photoelastic experiment for bimaterial are suggested. They are bonding method(bonding material: AW106, PC-1) and molding method. In the bonding method, residual stress is not occurred in the manufactured bimaterial. Crack is propagated along the interface or sometimes deviated from the interface. While in the molding method, residual stress is occurred in the manufactured bimaterial. Crack is always deviated from the interface and propagated in the epoxy region(softer materila). In order to propagate with constant velocity along the interface of bimaterial with arbitrary stiffer material, edge crack should be located along the interface of the acute angle side of the softer material in the bimaterial.

  • PDF