• 제목/요약/키워드: Orthotropic Material

검색결과 285건 처리시간 0.024초

윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구 (An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis)

  • 김태우;최지영;이현종;백종은;엄병식
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan Baba Akbar
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.105-126
    • /
    • 2016
  • In the present study, modelling and vibration control of axially moving laminated Carbon nanotubes/fiber/polymer composite (CNTFPC) plate under initial tension are investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. The governing equations of the laminated CNTFPC plates are derived based on new form of first-order shear deformation plate theory (FSDT) which is simpler than the conventional one due to reducing the number of unknowns and governing equations, and significantly, it does not require a shear correction factor. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consist of uniformly distributed and randomly oriented CNTs through the epoxy resin matrix. Afterwards, the structural properties of CNT reinforced polymer matrix which is assumed as a new matrix and then reinforced with E-Glass fiber are calculated by fiber micromechanics approach. Employing Hamilton's principle, the equations of motion are obtained and solved by Hybrid analytical numerical method. Results indicate that the critical speed of moving laminated CNTFPC plate can be improved by adding appropriate values of CNTs. These findings can be used in design and manufacturing of marine vessels and aircrafts.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

경량 복합재 차체 구조의 역설계를 통한 복합재료 라미나 물성 산출 기법 연구 (A Study on Calculation of Composites Lamina Material Properties through Reverse Engineering of Light Weight Composite Car-body)

  • 문진범;김지훈;장홍규;박지상
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2017
  • In reverse engineering, one of the main tasks is reconstructing the mechanical properties of used materials. For an isotropic material, it could be defined by a single tensile test using a coupon extracted from the structure. In contrast, CFRP composites require many tests and complex procedures to define all the material properties because CFRP is an orthotropic material and a stacked laminate. In this paper, the procedure to reconstruct composite material properties is studied by using the classical lamination theory and the test data of three different laminates from a composite structure. A sample reconstruction of composite material properties using a composite car body is introduced to verify the method.

구속효과를 고려한 토목섬유의 인발저항력 평가기법 (Assessment Method of Geosynthetic Pullout Resistance Considering Soil Confinement Effect)

  • 방윤경;이준대;전영근
    • 한국지반공학회논문집
    • /
    • 제17권6호
    • /
    • pp.135-148
    • /
    • 2001
  • 본 연구에서는, 인장력과 이에 수직방향으로 작용하는 압축음력을 동시에 고려한 직교이방성 합성부재의 인장력-변형률 관계식(Bhagwan, Agarwal & Brouoan, 1990)을 응용하여, 토목섬유인발저항력 및 인장력에 미치는 구속응력의 영향을 정량적으로 평가할 수 있는 기법을 제시하였다. 이를 위해서, 국내에서 판매되고 있는 부직포, 직포, 복합포 및 지오그리드 등의 토목섬유를 대상으로 구속신장시험(Confined Extension Test) 및 실내인발시험(Laboratory Pull-out Test)을 수행하였다. 시험결과를 토대로하여 구속응력이 토목섬유의 인장력-변형률 거동에 미치는 영향을 분석하였고, 구속응력에 의한 토목섬유 인장력 및 인발저항력의 변화를 정량적으로 평가하였다. 분석결과, 구속응력의 크기가 증가할수록 토목섬유의 할선계수가 뚜렷이 증가하였으며, 본 연구 제안방법에 의한 토목섬유-흙 사이의 마찰저항각 $\delta\; 및\; 보정계수\; a^2$값이 기존의 인발저항력 평가방법에 비하여 다소 큰 값을 나타내어, 인발저항력 산정시 토목섬유에 가해지는 구속음력의 크기를 고려하는 본 연구 제시방법의 경우에 보다 큰 인발저항력이 얻어짐을 알 수 있었다.

  • PDF

하중저항계수설계법 및 정밀해법에 의한 PFRP I형 단면 압축재의 국부좌굴강도 (Local Buckling Strength of PFRP I-Shape Compression Members Obtained by LRFD Design Method and Closed-Form Solution)

  • 최진우;서수홍;주형중;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제5권2호
    • /
    • pp.1-8
    • /
    • 2014
  • Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.

유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성 (Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis)

  • 사정우;허남일;최창호;오영국;조승연;도철진;권면;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

균질화 기법을 이용하여 기공이 있는 이차전지 극판의 대표 기계 물성 도출을 위한 연구 (Estimation of Representative Mechanical Property of Porous Electrode for Secondary Batteries with Homogenization Method)

  • 표창민;김재웅
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.85-91
    • /
    • 2022
  • The demand for electric vehicles has increased because of environmental regulations. The lithium-ion battery, the most widely used type of battery in electric vehicles, is composed of a cathode, an anode, and an electrolyte. It is manufactured according to the pole plate, assembly, and formation processes. To improve battery performance and increase manufacturing efficiency, the manufacturing process must be optimized. To do so, simulation can be used to reduce wasted resources and time, and a finite-element method can be utilized. For high simulation quality, it is essential to reflect the material properties of the electrode by considering the pores. However, the material properties of electrodes are difficult to derive through measurement. In this study, the representative volume element method, which is a homogenization method, was applied to estimate the representative material properties of the electrode considering the pores. The representative volume element method assumes that the strain energy before and after the conversion into a representative volume is conserved. The method can be converted into one representative property, even when nonhomogeneous materials are mixed in a unit volume. In this study, the material properties of the electrode considering the pores were derived. The results should be helpful in optimizing the electrode manufacturing process and related element technologies.