• Title/Summary/Keyword: Orthotropic Material

Search Result 285, Processing Time 0.027 seconds

The Advanced Composite Sandwich Panels for Light Weight of Road Structures (도로구조물 경량화를 위한 복합재료 샌드위치 패널에 관한 연구)

  • Han, Bong Koo
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS : For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS : All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS : Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials (등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발)

  • Hwang, Jae-Seok;Sin, Dong-Cheol;Kim, Tae-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

Free vibration analysis of orthotropic and laminated composite circular cylindrical shells (직교이방성 복합재료 원통셀의 자유진동 해석)

  • 이영신;문홍기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.758-769
    • /
    • 1986
  • A general analytical procedure is developed for evaluating the free vibration characteristics of orthotropic and laminated composite circular cylindrical shells. The solution is obtained through a direct solution procedure with axial mode displacements presented as simple Fourier series expressions. On the basis of the various thin shell theories most commonly used, the frequency equation is derived and is expressed in a unified form. The present analysis can deal with shells which are made of an arbitrary number of bonded layers each with a different thickness and different elastic orthotropic properties, and have classical boundary conditions of any kind. Several examples are shown with the consideration of the effects of fiber orientations and boundary conditions as well as different shell geometries and material properties. To verify the validity and accuracy of this analysis, the results are compared with the experimental and analytical results of other workers. Agreement among the various results is found to be fairly good.

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

Static and Dynamic Fracture Analysis for the Interface Crack of Isotropic-Orthotropic Bimaterial

  • Lee, Kwang-Ho;Arun Shukla;Venkitanarayanan Parameswaran;Vijaya Chalivendra;Hawong, Jae-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2002
  • In the present study, interfacial cracks between an isotropic and orthotropic material, subjected to static far field tensile loading are analyzed using the technique of photoelasticity. The fracture parameters are extracted from the full-field isochromatic data and the same are compared with that obtained using boundary collocation method. Dynamic photoelasticity combined with high-speed digital photography is employed for capturing the isochromatics in the case of propagating interfacial cracks. The normalized stress intensity factors for static cracks are greate. when ${\alpha}$: 90$^{\circ}$(fibers perpendicular to the interface) than when ${\alpha}$=0$^{\circ}$(fibers parallel to the interface), and those when ${\alpha}$=90$^{\circ}$are similar to ones of isotropic material. The dynamic stress intensity factors for interfacial propagating cracks are greater when ${\alpha}$=0$^{\circ}$ than ${\alpha}$=90$^{\circ}$. For the velocity ranges (0.1 < C/C$\sub$s1/<0.7) observed in this study, the complex dynamic stress intensity factor │K$\sub$D/│increases with crack speed c, however, the rate of increase of │K$\sub$D/│with crack speed is not as drastic as that reported for homogeneous materials.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Laminates Theory (특별직교이방성 복합적층판 이론을 응용한 포스트텐션된 슬래브 교량의 해석)

  • Han, Bong Koo;Kim, Yun Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2002
  • A post-tensioned slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

Peridynamic Modeling for Crack Propagation Analysis of Materials (페리다이나믹 이론 모델을 이용한 재료의 균열 진전 해석)

  • Chung, Won-Jun;Oterkus, Erkan;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • In this paper, the computer simulations are carried out by using the peridynamic theory model with various conditions including quasi-static loads, dynamic loads and crack propagation, branching crack pattern and isotropic materials, orthotropic materials. Three examples, a plate with a hole under quasi-static loading, a plate with a pre-existing crack under dynamic loading and a lamina with a pre-existing crack under quasi-static loading are analyzed by computational simulations. In order to simulate the quasi-static load, an adaptive dynamic relaxation technique is used. In the orthotropic material analysis, a homogenization method is used considering the strain energy density ratio between the classical continuum mechanics and the peridynamic. As a result, crack propagation and branching cracks are observed successfully and the direction and initiation of the crack are also captured within the peridynamic modeling. In case of applying peridynamic used homogenization method to a relatively complicated orthotropic material, it is also verified by comparing with experimental results.

Influence of Anisotropic Property Ratio of Orthotropic Material on Stress Components and Displacement Components at Crack tip Propagating with Constant Velocity Under Dynamic Mode I (동적모드 I 상태에서 직교 이방성체의 이방성비가 등속전파 균열선단의 응력성분과 변위성분에 미치는 영향)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 1995
  • When the crack in orthotropic material is propagating under dynamic model I load, influences of anisotropic property ratio $E_{L}$/ $E_{T}$ on stress and displacement around propagating crack tip are studied in this paper. When M<0.55 and .alpha.=90.deg.(.alpha.; the angle of fiber direction with crack propagating direction, M; crack propagation velocity/shear stress wave velocity), the influence of $E_{L}$/ $E_{T}$ on stress .sigma.$_{x}$, .sigma.$_{y}$, .tau.$_{xy}$ and .sigma.$_{\theta}$ is the greast on .sigma.$_{y}$. Except M<0.55 and .alpha.=90.deg., it is the greast on .sigma.$_{x}$ in any situation. Increasing $E_{L}$/ $E_{T}$, stress components are increased or decreased. When maximum stress is based, the stress .sigma.$_{x}$(.alpha.=90.deg.), .sigma.$_{y}$(.alpha.=0.deg.) and .tau.$_{xy}$ (.alpha.=90.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0. any stresses except .sigma.$_{*}$x/(.alpha.=0.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0.9. When .alpha.=90.deg., the influence of $E_{L}$/ $E_{T}$ on displacement U and V is V>U in any velocities of crack propagation, when .alpha.=0.deg., it is VU in M>0.75 and when $E_{L}$/ $E_{T}$ is increased, U and V are decreased in any conditions.sed in any conditions.tions.tions.tions.