• Title/Summary/Keyword: Orthogonal machining

Search Result 94, Processing Time 0.024 seconds

A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel (STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구)

  • Dong-Won Lee;Hyeon-Hwa Lee;Jin Soo Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

A Study on Surface Roughness in Wire Electrical Discharge Machining of STD11 based on Taguchi method (다구찌법에 의한 STD11의 와이어방전가공에서 표면거칠기에 관한 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.7-11
    • /
    • 2014
  • The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of STD11. Based on the Taguchi experimental design ($L_{27}$ orthogonal array) method, a series of experiments were performed by considering time-on, voltage, time-off, wire speed, and flow rate as input parameters. The surface roughness was considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the minimum surface roughness was found using Taguchi methodology. In order to investigate the effects of process parameters on the surface machined by WEDM, Several experiments are conducted to consider effects of time-on, voltage, time-off, wire speed and flow rate on the surface roughness. Analysis of variance (ANOVA) as well as regression analysis are performed on experimental data. The best results of surface roughness were obtained at higher voltage, lower wire speed, and lower time-on.

A technique for the identification of friction at tool/chip interface during machining

  • Arrazola, P.;Meslin, F.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.319-320
    • /
    • 2002
  • Numerical simulation of chip formation during high speed machining requires knowing the friction at tool/chip interface. This parameter is hardly identified and generally the loadings (temperature, force) during the identification are not similar to those encountered during machining. Thus, Coulomb friction identified with pin-on-disc device is often used to conduct numerical simulation. The used of this technique cannot leads to good numerical results of chip formation compared to the experimental tests especially in the case of low uncut chip thickness. In this contribution, we propose a new method to evaluate the friction at tool/chip interface. In fact several Coulomb friction parameters are identified corresponding to several parts of the cutting tool. Experimental tests have been conducted allowed us to determinate both the level and the distribution of the Coulomb friction. Experimental results are also compared to the results of orthogonal cutting simulation. We show that this technique allows predicting accuracy results of chip formation.

  • PDF

Effect of Coating and Machining Parameters on Surface Finish in Dry Drilling of Aluminium 6061 (Al 6061의 드릴가공에서 공구코팅과 공정변수가 표면정도에 미치는 영향)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.47-52
    • /
    • 2015
  • In this paper, the performance of uncoated- and Titanium nitride aluminium TiAlN-PVD coated- carbide twist drills were investigated when drilling aluminium alloy, Al 6061. This research focuses on the optimization of drilling parameters using the Taguchi technique to obtain minimum surface roughness and thrust force. A number of drilling experiments were conducted using the L9 orthogonal array on a CNC vertical machining center. The experiments were performed on Al 6061 material l blocks using uncoated and coated HSS twist drills under dry cutting conditions. Analysis of variance(ANOVA) was employed to determine the most significant control factors. The main objective is to find the important factors and combination of factors influence the machining process to achieve low surface roughness and low cutting thrust force. From the analysis of the Taguchi method indicates that among the all-significant parameters, feed rate are more significant influence on surface roughness and cutting thrust than spindle speed.

A study on the prediction of cutting force in ball-end milling process (볼 엔드 밀에 의한 곡면가공의 절삭력 예측에 관한 연구)

  • 박희덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.433-442
    • /
    • 1989
  • Owing to the development of CNC machine tools and automatic programing software, the milling process with ball-end mill has become the most widely used process where three-dimensional precision machining is important. In this study, the ball-end milling process has been analyzed and a cutting force model has been developed to predict the cutting force acting on the ball-end mill on given machining conditions. The development of the model is based on the analysis of geometry of a ball-end mill an the oblique cutting process. The cutting edges of ball-end mills are considered as a series of infinitesimal elements and the geometry of the cutting edge element each cutting edge element is straight. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be predicted through the model. The predicted cutting forces has shown a fairly good agreement with the test results in various plane cutting conditions.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim P.;Park S.Y.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim, Pyo;Park, Sang-Yoon;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.