• Title/Summary/Keyword: Orthogonal Magnetic Field

Search Result 25, Processing Time 0.024 seconds

The Influence of an Orthogonal Field on Deperming Performance (직교자계가 디펌성능에 미치는 영향)

  • Kim, Ki-Chan;Kim, Young-Hak;Shin, Kwang-Ho;Kim, Hwi-Seok;Yoon, Kwan-Seob;Yang, Chang-Sub
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.359-363
    • /
    • 2011
  • An orthogonal magnetic field is often used for a military vessel in the deperm process such as Flash D deperm protocol and Anhysteretic deperm protocol. The effect of the orthogonal magnetic field on a deperm performance was investigated for a sample with strain-induced magnetization and field-induced magnetization given to different direction. A 70mm wide, 110mm long and 0.25mm thick rectangular steel plate was bent to have U-shape and to generate a strong strain on the bottom region of U-shaped steel plate. Field-induced magnetization was attached by NdFeB permanent magnet. Demagnetization was performed by applying magnetic field with a step decrement from the first field(the first shot) under the action of DC bias field.

Demagnetization Performance According to Vertical and Horizontal Magnetic Bias Fields

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.453-456
    • /
    • 2011
  • Demagnetization for a tube sample which was made of a galvanized steel sheet was performed by applying a magnetic field with a decrement to remove the remanent magnetization of the material. An orthogonal fluxgate magnetic field sensor was used to measure a magnetic field created from a ferromagnetic material. To evaluate the remanent magnetization, the measured magnetic fields were separated into two magnetic field components by the remnant magnetization and the induced one. The horizontal and the vertical bias fields should be controlled separately during demagnetization to remove the horizontal and the vertical components of the remanent magnetization of the tube sample.

Development of Magnetic Field Mapping System Using Robot (로봇을 이용한 자기장 측정 시스템 개발)

  • Kim, Man-Gil;An, In-Seok;Lee, Pyeong-Gi;Park, Sang-Bae;Lee, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.1018-1021
    • /
    • 2003
  • This dissertation is reference to measure visual information about the configuration of magnetic field automatically and materialize the new magnetic field mapping system for the rapid and clear measure by using of the mediocrity orthogonal robot in the three- dimensional space required the measure of magnetic field concurrently. The measuring sensor is composed to be available for the measure of three-dimensional direction of magnetic field by vertically conjoining each of three hall sensors utilized of the hall effect and installed Gaussmeter, which is devised to receive the sensor result and the robot controller, away from the measuring robot in order to minimize the affection of magnetic field. Also, the controller and Gaussmeter are composed of Use interface, RS-232C and IEEE-488.2 communication. Interface system is written in NI's LabVIEW and composed to be able to set up a measuring area, the measuring number of times, two and three-dimensional graph, the velocity of robot and the magnetic field distribution graph of each element by inputting parameters. The materialized magnetic field mapping system expert the collection of the data easily and the effect of utilizing data.

  • PDF

3-dimensional Coordinate Measurement by Pulse Magnetic Field Method (자기적 방법을 이용한 3차원 좌표 측정)

  • Im, Y.B.;Cho, Y.;Herr, H.B.;Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.206-211
    • /
    • 2002
  • We have constructed a new kind of magnetic motion capture sensor based on the pulse magnetic field method. 3-orthogonal magnetic pulse fields were generated in turns only one period of sinusoidal waveform using 3-orthogonal magnetic dipole coils, ring counter and analog multiplier. These pulse magnetic fields were measured with 3-orthogonal search coils, of which induced voltages by the x-, y-, and l-dipole sources using S/H amplifier at the time position of maximum induced voltage. Using the developed motion capture sensor, we can measure position of sensor with uncertainty of ${\pm}$0.5% in the measuring range from ${\pm}$0.5 m to ${\pm}$1.5 m.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Omnidirectionally Beam-Steerable Orthogonal Loop Resonator with Switch for Wireless Power Transfer (무선전력전송용 스위치가 장착된 직교루프 전방향 빔조향 공진기)

  • Choi, Bo-Hee;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.300-304
    • /
    • 2015
  • This paper presents an omnidirectionally beam-steerable orthogonal loop resonator for wireless power transfer. The resonator is composed of two orthogonal loops. These connections of two loops and the current direction on the loops are determined by the control of switch. The magnetic field direction is determined by the vector sum of each loop current. The beam is steerable to eight directions by four switch modes. Using the suitable switch mode, the simulation and measurement efficiencies in the whole azimuthal direction are 56.3~60.0 %(deviation 3.7 %) and 41.2~48.7 %(deviation 7.5 %), respectively. The results show a little variation of transmission efficiency in the azimuthal direction.

Mode Matching Technique in a Cylindrical Cavity with Center Wire

  • Han, Dae Hyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.143-146
    • /
    • 2018
  • The eigen value problem of a coaxial cavity and a modified pill box cavity is investigated using the mode matching technique. The coaxial cavity has a cylindrical cavity with beam ports and center conductor. The pill box cavity is the same as a coaxial cavity without center conductor. The electric field and magnetic field are formulated in propagation region and resonance region. The boundary and orthogonal conditions are applied to the electric and magnetic fields. We derived the eigen value equation by the proposed procedure in a coaxial cavity and a modified pill box cavity. The electromagnetic field of the real structure is disturbed by the coaxial wire. The effect of the coaxial wire in pill box cavity with beam ports increase the dominant resonant frequency. The coaxial line method of the coupling impedance is not adequate for a cylindrical cavity. The results of the mode matching technique and simulation agree well. The results confirm the proposed formulation is valid.

A Study on the Sensing Function of Amorphous Magnetostrictive Wire (아몰퍼스 자왜 와이어의 센싱기능에 관한 연구)

  • 조남희;신용진;서강수;임재근;문현욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.89-92
    • /
    • 1996
  • In this paper, we mention the study on the sensing function of amorphous magneto- striction wire with about 125${\mu}{\textrm}{m}$$\Phi$ in diameter. The wire in fabricated by using injection and quenching method under the high speed rotating water flow. The wire\`s compotion is (Fe$_{75}$ $Co_{25}$)$_{77}$Si$_{8}$B$_{15}$ , and generates sharp Matteucci voltage by large Barkhausen jump effect even the weak magnetic field. In this study, we don\`t use pick-up coil. Instead, we apply external magnetic field of 3.6Oe in the direction orthogonal to the wire. Then, we detect Matteucci voltage of 1.lmV to both side of 20cm amorphous-wire. Thus, we find that the fabricated wire has the function necessary as the high sensitive sensor material.l.al.l.

  • PDF