• 제목/요약/키워드: Orthogonal Curvilinear Grid

검색결과 17건 처리시간 0.011초

SWAN 모형을 이용한 정방형 직교격자체계와 직교-곡선 격자체계의 비교 연구 (Comparison of Orthogonal Curvilinear Grid and Regular Grid Using SWAN Model)

  • 김효섭;장창환;김상택;김형남
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.2038-2042
    • /
    • 2010
  • 본 연구는 동해안 속초항에 정방형 직교격자체계(Regular Grid)와 직교-곡선 격자체계(Orthogonal Curvilinear Grid)를 이용하여 SWAN 모형에 적용시켜 각 격자체계에 따른 파랑변형의 특성을 비교하는데 목적이 있다. 본 연구결과 북방파제가 연장 중인 방파제 선단에서 회절현상이 관측 되었으며, 속초 해수욕장 인근에서의 해안선 형상에 따라 굴절 효과로 인하여 입사 파랑의 벡터들이 해안선에 수직하게 입사되는 현상이 관측 되었고, 특히, 조도 주변에서 파랑의 굴절 효과와 차단효과를 관찰할 수 있다. 정방형 직교 격자체계와 직교-곡선 격자체계의 계산결과는 유사하나 직교-곡선 격자체계가 해안선에서 보다 정밀한 계산 값을 얻을 수 있었다. 하지만 직교-곡선 격자체계는 계산시간이 최소 4배 이상 증가하는 단점을 가지고 있다.

  • PDF

Analysis of 2-Dimensional Shallow Water Equations Using Multigrid Method and Coordinate Transformation

  • Lee, Jong-Seol;Cho, Won-Cheol
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 1998
  • Various numerical methods for the two dimensional shallow water equations have been applied to the problems of flood routing, tidal circulation, storm surges, and atmospheric circulation. These methods are often based on the Alternating Direction Implicity(ADI) method. However, the ADI method results in inaccuracies for large time steps when dealing with a complex geometry or bathymetry. Since this method reduces the performance considerably, a fully implicit method developed by Wilders et al. (1998) is used to improve the accuracy for a large time step. Finite Difference Methods are defined on a rectangular grid. Two drawbacks of this type of grid are that grid refinement is not possibile locally and that the physical boundary is sometimes poorly represented by the numerical model boundary. Because of the second deficiency several purely numerical boundary effects can be involved. A boundary fitted curvilinear coordinate transformation is used to reduce these difficulties. It the curvilinear coordinate transformation is used to reduce these difficulties. If the coordinate transformation is orthogonal then the transformed shallow water equations are similar to the original equations. Therefore, an orthogonal coorinate transformation is used for defining coordinate system. A multigrid (MG) method is widely used to accelerate the convergence in the numerical methods. In this study, a technique using a MG method is proposed to reduce the computing time and to improve the accuracy for the orthogonal to reduce the computing time and to improve the accuracy for the orthogonal grid generation and the solutions of the shallow water equations.

  • PDF

근사직교 경계고정 곡선좌표계를 사용한 수치적 격자생성 (The numerical grid generation using the nearly orthogonal boundary-fitted curvilinear coordinate systems)

  • 맹주성;신종균
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.561-565
    • /
    • 1988
  • 본 연구에서는 제어함수를 수식으로부터 유도하여 자동적인 격자간격제어가 가능한 "근사직교 경계고정곡선좌표계"를 생성하는 새로운 방법을 제시하여 2차원영역 에 대한 그 적용을 논의하고자 한다. 논의하고자 한다.

수리동역학적 모의를 위한 적정 격자해상도 산정방법 (Evaluation of Optimal Grid Resolution for Hydrodynamic Proper Simulation)

  • 안정민;박인혁;류시완;허영택
    • 대한공간정보학회지
    • /
    • 제20권1호
    • /
    • pp.109-116
    • /
    • 2012
  • 본 연구에서는 CCHE2D와 EFDC모형을 이용한 모의를 통하여 격자의 횡단해상도에 따른 물리적 지형의 재현성과 모의결과에 대한 영향을 검토하고자 하였다. 낙동강 금호강 유입구간을 대상으로 2006년 강우사상에 대한 부정류모의를 통하여 면적고도곡선과 대상구간내 수위관측소 지점에서의 실측치와 모의치간의 비교를 통하여 구성격자망의 적정성 및 모의결과에 대한 영향을 각각 검토하였다. 일반적으로 격자 해상도의 증가는 계산시간의 증가를 야기하므로 수행 내용과 목적, 계산의 효율성 측면에서 적절한 격자해상도의 선택이 필요하다. 정밀한 모의를 위해서는 고해상도 격자를 이용한 모의를 수행해야 하나, 빠른 의사결정이 요구되는 홍수기와 같이 모형수행의 효율성을 고려해야 하는 경우에 적용 가능한 물리적 지형의 재현성과 결과에 대한 신뢰성을 보장할 수 있는 적정 격자 해상도가 존재함을 확인할 수 있었다.

Numerical Analysis of Evolution of Thermal Stratification in a Curved Piping System

  • Park, Seok-Ki;Nam, Ho-Yun;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.169-179
    • /
    • 2000
  • A detailed numerical analysis of the evolution of thermal stratification in a curved piping system in a nuclear power plant is performed. A finite volume based thermal-hydraulic computer code has been developed employing a body-fitted, non-orthogonal curvilinear coordinate for this purpose. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of momentum interpolation method. The SIMPLE algorithm is employed for the pressure and velocity coupling, and the convection terms are approximated by a higher-order bounded scheme. The thermal-hydraulic computer code developed in the present study has been applied to the analysis of thermal stratification in a curved duct and some of the predicted results are compared with the available experimental data. It is shown that the predicted results agree fairly well with the experimental measurements and the transient formation of thermal stratification in a curved duct is also well predicted.

  • PDF

일반곡률좌표계 운동량방정식의 종속변수 선정에 관한 연구 (A Study on the Choice of Dependent Variables of Momentum Equations in the General Curvilinear Coordinate)

  • 김탁수;김원갑;김철수;최영돈
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1500-1508
    • /
    • 2001
  • This paper represents the importance of dependent variables in non-orthogonal curvilinear coordinates just as the importance of those variables of convective scheme and turbulence model in computational fluid dynamics. Each of Cartesian, physical covariant and physical contravariant velocity components was tested as the dependent variables of momentum equations in the staggered grid system. In the flow past a circular cylinder, the results were computed to use each of three variables and compared to experimental data. In the skewed driven cavity flow, the results were computed to check the grid dependency of the variables. The results used in Cartesian and physical contravariant components of velocity in cylinder flow show the nearly same accuracy. In the case of Cartesian and contravariant component, the same number of vortex was predicted in the skewed driven cavity flow. Vortex strength of Cartesian component case has about 30% lower value than that of the other two cases.

중첩 격자계를 이용한 동익과 정익의 상호작용이 있는 익렬 유동해석 (Numerical Simulation of Cascade Flows with Rotor-Stator Interaction Using the Multiblocked Grid)

  • 정영래;박원규;이상욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.163-169
    • /
    • 1999
  • The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.

  • PDF

유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석 (Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion)

  • 조종철;김윤일;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

전향 원심 송풍기의 3 차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

Chimera 격자 기법을 이용한 Car-like body 주위의 전체 유동 해석 (Full flow analysis around a Car-like body using Chimera grid technique)

  • 오상욱;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.86-91
    • /
    • 1997
  • This paper describes analysis of complex flow around Car-like body using Chimera grid technique. As a computational algorithm, Pullboat and Chaussee's Diagonal algorithm is selected to reduce computational time. Introducing hole points flag to this Diagonal algorithm, an algorithm for Chimera grid is generated easily. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. The fourth-order artificial damping is added to the continuity equation for numerical stability, It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF