• Title/Summary/Keyword: Orthodontic adhesives

Search Result 27, Processing Time 0.027 seconds

Microhybrid versus nanofill composite in combination with a three step etch and rinse adhesive in occlusal cavities: five year results

  • Tuncer, Safa;Demirci, Mustafa;Oztas, Evren;Tekce, Neslihan;Uysal, Omer
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.4
    • /
    • pp.253-263
    • /
    • 2017
  • Objectives: The aim of the study was to evaluate the 5-year clinical performance of occlusal carious restorations using nanofill and microhybrid composites, in combination with 3-step etch-and-rinse adhesives, in patients who were going to commence orthodontic treatment. Materials and Methods: A total of 118 restorations for occlusal caries were conducted prior to orthodontic treatment. Occlusal restorations were performed both with Filtek Supreme XT (3M ESPE) and Filtek Z250 (3M ESPE) before beginning orthodontic treatment with fixed orthodontic bands. Restorations were clinically evaluated at baseline and at 1, 2, 3, 4, and 5-year recalls. Results: None of the microhybrid (Filtek Z250) and nanofill (Filtek Supreme XT) composite restorations was clinically unacceptable with respect to color match, marginal discoloration, wear or loss of anatomical form, recurrent caries, marginal adaptation, or surface texture. A 100% success rate was recorded for both composite materials. There were no statistically significant differences in any of the clinical evaluation criteria between Filtek Z250 and Filtek Supreme XT restorations for each evaluation period. Conclusions: The composite restorations showed promising clinical results relating to color matching, marginal discoloration, wear or loss of anatomical form, recurrent caries, marginal adaptation, and surface texture at the end of the 5-year evaluation period.

A Change of Shear Bond Strength of Orthodontic Resin Adhesives under Water Immersion (침수후 시간에 따른 교정용 레진접착제의 전단결합강도 변화)

  • Lee, Je-Jun;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.783-789
    • /
    • 1998
  • The purpose of this study was to evaluate the changes of shear bond strengths and failure patterns in orthodontic resin adhesives according to the water immersion time. Metal brackets were bonded to the specimens involving the premolars with chemical-cured($Concise^{\circledR}$) and light-cured($Transbond^{\circledR}$) adhesives. The shear bond strength was measured on universal testing machine and the failure patterns were assessed with the adhesive remnant index(ARI) after storage in distilled water at $37^{\circ}C$ for 1 day, 1 week and 1, 3, and 6 months, respectively. The results were as follows. 1. The shear bond strengths at the 6 month in both Concise and Transbond were significantly higher than those at the 1 day, 1 week and 1 month(p<0.05). There were positive correlations between shear bond strength and water immersion time in both Concise and Transbond(P<0.01). 2. There were no significant differences in shear bond strength between Concise and Transbond. 3. The brackets were failed primarily at the bracket base-adhesive interface and there was no significant difference in the incidence of ARI scores according to the water immersion time.

  • PDF

Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives

  • Goracci, Cecilia;Ozcan, Mutlu;Franchi, Lorenzo;Di Bello, Giuseppe;Louca, Chris;Vichi, Alessandro
    • The korean journal of orthodontics
    • /
    • v.49 no.6
    • /
    • pp.404-412
    • /
    • 2019
  • Objective: To assess shear bond strength and failure mode (Adhesive Remnant Index, ARI) of orthodontic brackets bonded to polymethylmethacrylate (PMMA) blocks for computer-aided design/manufacture (CAD/CAM) fabrication of temporary restorations, following substrate chemical or mechanical treatment. Methods: Two types of PMMA blocks were tested: $CAD-Temp^{(R)}$ (VITA) and $Telio^{(R)}$ CAD (Ivoclar-Vivadent). The substrate was roughened with 320-grit sandpaper, simulating a fine-grit diamond bur. Two universal adhesives, Scotchbond Universal Adhesive (SU) and Assure Plus (AP), and a conventional adhesive, Transbond XT Primer (XTP; control), were used in combination with Transbond XT Paste to bond the brackets. Six experimental groups were formed: (1) $CAD-Temp^{(R)}/SU$; (2) $CAD-Temp^{(R)}/AP$; (3) $CAD-Temp^{(R)}/XTP$; (4) $Telio^{(R)}$ CAD/SU; (5) $Telio^{(R)}$ CAD/AP; (6) $Telio^{(R)}$ CAD/XTP. Shear bond strength and ARI were assessed. On 1 extra block for each PMMA-based material surfaces were roughened with 180-grit sandpaper, simulating a normal/medium-grit ($100{\mu}m$) diamond bur, and brackets were bonded. Shear bond strengths and ARI scores were compared with those of groups 3, 6. Results: On $CAD-Temp^{(R)}$ significantly higher bracket bond strengths than on $Telio^{(R)}$ CAD were recorded. With XTP significantly lower levels of adhesion were reached than using SU or AP. Roughening with a coarser bur resulted in a significant increase in adhesion. Conclusions: Bracket bonding to CAD/CAM PMMA can be promoted by grinding the substrate with a normal/medium-grit bur or by coating the intact surface with universal adhesives. With appropriate pretreatments, bracket adhesion to CAD/CAM PMMA temporary restorations can be enhanced to clinically satisfactory levels.

SHEAR BOND STRENGTH OF METAL BRACKETS BONDED WITH LIGHT-CURED ADHESIVE: AN IN VITRO COMPARATIVE STUDY (광중합 접착제로 접착된 금속 브라켓의 전단접착강도에 관한 연구)

  • Chang, Young-Il;Lee, Suhng-Jin
    • The korean journal of orthodontics
    • /
    • v.22 no.2 s.37
    • /
    • pp.289-296
    • /
    • 1992
  • The purpose of this study was to evaluate and compare the shear bond strengths and failure sites of metal brackets bonded with chemically cured adhesive and light-cured adhesive. 10 brackets were bonded on prepared enamel surfaces with $Transbond^{circledR}$ (Unitek/3M; U.S.A.) light-cured orthodontic adhesive and another 10 brackets were bonded with $Ortho-one^{\circledR}$ (Bisco:U.S.A.) chemically cured orthodontic adhesive. 24 hours after bonding, the Instron universal testing machine was used to measure the shear bond strengths. The failure sites were examined under streoscopic microscope. The results were as follows: 1 . The mean shear bond strength of metal brackets bonded with light-cured adhesive was lower than that of metal brackets bonded with chemically cured adhesive, but the difference was not statistically significant (p < 0.05). 2. Regardless of the type of adhesives, the brackets were failed primarily at the bracket base-adhesive interface. 3. Bonding of metal brackets with light-cured adhesive is considered to be clinically acceptable.

  • PDF

THE EFFECTS OF MECHANICAL AND THERMAL FATIGUE ON THE SHEAR BOND STRENGTH OF ORTHODONTIC ADHESIVES (기계적 및 열적 피로가 교정용 접착제의 결합강도에 미치는 영향)

  • Shin, Wan-Cheal;Kim, Jong-sung;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.175-186
    • /
    • 1996
  • The purpose of this study was to examine the effects of mechanical and thermal fatigue on the shear bond strength(SBS) of stainless steel mesh brackets bonded to human premolar teeth with 3 no-mix adhesives. The stainless steel mesh bracket was Ormesh(Ormco, .022 slot) and three types of no-mix adhesives were Ortho-one(Bisco), $Monolok^2$(RMO), $System\;1^+$(Ormco). The $10^6$ loadcycles of $17.4{\times}10^2sin2{\pi}ftlg{\cdot}cm$ and the 1,000 thermocycles of 15 second dwell time in each bath of $5^{\circ}C\;and\;55^{\circ}C$ were acturated as mechanical and thermal fatigue stress, and SBS were measured after each fatigue test. The fracture sites were analyzed by stereoscope and scanning electron microscope. The results obtained were summarized as follows; 1. Before thermocycles, $Monolok^2$ showed the highest Knoop hardness number(KHN, $64.03kg/mm^2$) and $System\;1^+$ showed the lowest value($31.60kg/mm^2$). After thermocycling, $Monolok^2$ also showed the highest KHN($38.03kg/mm^2$) and $system\;1^+$ showed the minimum($20.87kg/mm^2$). The KHN of Ortho-one, $Monolok^2,\;System\;1^+$ significantly decreased after thermocycling (P<0.01). 2. In static shear bond test, three adhesives had no significant differences in the SBS(P>0.01). 3. After thermocycling test, $Monolok^2$ showed the maximum SBS($19.34{\pm}2.75MPa$) and Ortho-one showed the minimum SBS($13.66{\pm}2.23MPa$). The SBS of Ortho-one(P<0.01) and $System\;1^+$(P<0.05) significantly decreased after $10^3$ thermocycles. 4. The SBS of three adhesives after $10^6$ loadcycles were similar and were not significantly decreased compared with static group(P>0.01). 5. The failure sites were usually bracket/resin interface in all groups irrespective of experimental conditions.

  • PDF

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.3
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.

THE EFFECTS OF FLUORIDE RELEASING ORTHODONTIC SEALANT ON THE SHEAR BOND STRENGTH Of LIGHT-AND CHEMICAL-CURED ORTHODONTIC RESINS (불소가 유리되는 교정용 전색제가 광중합형 및 화학중합형 교정용 접착제의 전단결합강도에 미치는 영향)

  • Kim, Bong-Hyun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.781-789
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of fluoride relasing orthodontic sealant on the shear bond strength of light-and chemical-cured orthodontic rosins, to compare the shear bond strenth with light-and chemical-cured orthodontic resins, and to identify the changes of shear bond strength by rebonding in vitro. The brackets were divided into eight groups. Each group of metal brackets had different bonding mechanisms with adhesives. Group A : Transbond only Group B : Mono-Lok 2 only Group C : Light cured FluoroBond+Transbond Group D : Light cured FluoroBond+Mono-Lok 2 Group E : Transbond only(rebonded) Group F : Nomo-Lok 2 only(rebonded) Group G : Light cured FluoroBond+Transbond(rebonded) Group H : Light cured FluoroBond+Mono-Lok 2(rebonded) 65 extracted human premolars were prepared for bonding and 65 metal brackets for each group were bonded to prepared enamel surfaces of buccal surfaces as the above prescription. 24 hours bonding after, the Instron universal testing machine was used to test the shear bond strength of metal brackets to enamel. After debonding, same kind of metal brackets for each group were rebonded to prepared enamel surfaces of buccal surfaces to test the shear bond strength at the rebonding to enamel. Statistical analysis of the data was carried out Student's t-test ANOVA test, and Scheffe test using $SPSS/PC^+$ The results were as follows : 1. The order of shear bond strength was Group B(11.84MPa), Group A(10.75MPa), Group, D(9.69MPa), and Group C(9.39MPa)in lst bonded groups. 2. The order of shear bond strength was Group E(7.40MPa), Group G(6.48MPa), Group F(5.89MPa), and Group H(5.15MPa) in rebonded groups. 3. The shear bond strength of chemical cured orthodontic rosins had higher than that of light-cured orthodontic resins in all groups, but there was no statistical significance between groups(P>0.05). 4. In rebonded groups, the shear bond strength of light cured orthodontic rosins had higher than that of chemical cured orthodontic resins, but there was no statistical significance between groups(P>0.05). 5. The shear bond strength of all rebonded groups progressively decreased than that of 1st bonded groups, and there was statistical significance between groups(p<0.05, p<0.001).

  • PDF

Effects of conventional and self-etching adhesive systems on bond strength of orthodontic attachments bonded to erupted and unerupted teeth (치아 맹출 유무에 대한 자가부식 접착제에 의한 교정용 부착장치의 접착강도)

  • Nur, Metin;Uysal, Tancan;Yesilyurt, Cemal;Bayram, Mehmet
    • The korean journal of orthodontics
    • /
    • v.40 no.4
    • /
    • pp.267-275
    • /
    • 2010
  • Objective: The aim of this study was to evaluate and compare the shear bond strength (SBS) and failure-mode of orthodontic buttons bonded to erupted and unerupted teeth with conventional and self-etching adhesive systems. Methods: Eighty-four erupted and 84 unerupted, human third-molar teeth were used. For both groups, the buccal surfaces of each tooth were assigned one of the following type of adhesive systems (n = 12). A, Conventional systems: 1, Transbond XT (3M Unitek, Monrovia, CA, USA); 2, Prime & Bond NT (Dentsply/Caulk, Milford, USA); 3, Single Bond (3M ESPE, Minnesota, USA); and B, Self-etching adhesives; 4, Clearfil SE Bond (Kuraray, Okayama, Japan); 5, Transbond Plus (3M Unitek, Monrovia, CA, USA); 6, Clearfil S3 (Kuraray, Tokyo, Japan); 7, G Bond (GC, Tokyo, Japan). The SBSs of the attachments and the adhesive remnant index (ARI) scores were recorded. Data were analyzed with analysis of variance (ANOVA), independent-sample t-test and chi-square tests. Results: When the SBSs of erupted and unerupted teeth were compared, only the Clearfil-SE Bond and G-Bond were significantly different. Bond strengths of all adhesive systems were higher in unerupted teeth than erupted teeth, except the Single-Bond system. Conclusions: When using conventional adhesives, bonding to erupted and unerupted teeth may not be significantly different. However, clinicians need to take into consideration the types of self-etching systems before usage.

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

Debonding forces of three different customized bases of a lingual bracket system

  • Sung, Jang-Won;Kwon, Tae-Yub;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • Objective: The purpose of this study was to investigate whether extension of the custom base is necessary for enhancement of bond strength, by comparing the debonding forces and residual adhesives of 3 different lingual bracket systems. Methods: A total of 42 extracted upper premolars were randomly divided into 3 groups of 14 each for bonding with brackets having (1) a conventional limited resin custom base; (2) an extended gold alloy custom base: Incognito${TM}$; and (3) an extended resin custom base: KommonBase${TM}$. The bonding area was measured by scanning the bracket bases with a 3-dimensional digital scanner. The debonding force was measured with an Instron universal testing machine, which applied an occlusogingival shear force. Results: The mean debonding forces were 60.83 N (standard deviation [SD] 10.12), 69.29 N (SD 9.59), and 104.35 N (SD17.84) for the limited resin custom base, extended gold alloy custom base, and extended resin custom base, respectively. The debonding force observed with the extended resin custom base was significantly different from that observed with the other bases. In addition, the adhesive remnant index was significantly higher with the extended gold alloy custom base. Conclusions: All 3 custom-base lingual brackets can withstand occlusal and orthodontic forces. We conclude that effective bonding of lingual brackets can be obtained without extension of the custom base.