• 제목/요약/키워드: Orthodontic Force

검색결과 296건 처리시간 0.026초

ORTHODONTIC TRACTION OF TRAUMATICALLY INTRUDED TEETH : CASE REPORT (외상에 의해 함입된 치아의 교정적 견인을 통한 치험례)

  • Kim, Hae-Ri;Oh, So-Hee;Kim, Young-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제34권3호
    • /
    • pp.506-512
    • /
    • 2007
  • Traumatic injury of tooth in children is commonly occurred problem. It is classified into tooth, periodontal tissue, supporting bone, soft tissue injury by it's area and extent. Among the periodontal tissue injuries, traumatically intruded teeth are common in anterior maxillary area, though the occurrence rate is rather low, the pulp and supporting tissue injury is possible by vertical impact. The treatment method of traumatically intruded teeth is various. Observation on the spontaneous reeruption for 3-4 weeks is recommended if the traumatized teeth are deciduous teeth or slightly intruded immature permanent anterior teeth. If this did not occur because the extent of intrusion is severe or the traumatized teeth are mature permanent anterior teeth, orthodontic traction is applied by fixed/removable appliances. At this time, light and continuous force is applied for the extrusive movement of the intruded teeth. When above procedures are impossible, surgical repositioning and fixation is recommended. In these cases, we performed conventional endodontic therapy for pulp necrosis and orthodontic traction with fixed appliance. We obtained satisfactory results and will report that.

  • PDF

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • 제41권1호
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Impact of piezocision on orthodontic tooth movement

  • Papadopoulos, Nikolaos;Beindorff, Nicola;Hoffmann, Stefan;Jost-Brinkmann, Paul-Georg;Prager, Thomas Michael
    • The korean journal of orthodontics
    • /
    • 제51권6호
    • /
    • pp.366-374
    • /
    • 2021
  • Objective: This study investigated the impact of a single piezocision in the maxillary alveolar process on the speed of tooth movement. The null hypothesis was that the speed of tooth movement will be equal with and without piezocision. Methods: All maxillary molars on one side were moved against the combined incisors in 10 ten-week-old male Wistar rats. Under general anesthesia, a force of 25 cN was applied on either side using a Sentalloy closed coil spring. After placing the orthodontic appliance, vertical corticision was performed using a piezotome under local anesthesia, 2 mm mesial from the mesial root of the first molar on a randomly selected side; the other side served as the control. At the beginning of the treatment, and 2 and 4 weeks later, skull micro-computed tomography was performed. After image reconstruction, the distance between the mesial root of the first molar and the incisive canal, and the length of the mesial root of the first maxillary molar were measured. Moreover, the root resorption score was determined as described by Lu et al. Results: Significantly higher speed of tooth movement was observed on the corticision side; thus, the null hypothesis was rejected. The loss of root length and root resorption score were significantly more pronounced after piezocision than before. A strong correlation was observed between the speed of tooth movement and root resorption on the surgical side, but the control side only showed a weak correlation. Conclusions: Piezocision accelerates orthodontic tooth movement and causes increased root resorption.

The comparison of the frictional force by the type and angle of orthodontic bracket and the coated or non-coated feature of archwire (교정용 브라켓의 종류와 각도, 호선의 코팅 여부에 따른 마찰력의 비교)

  • Jang, Tae-Ho;Kim, Sang-Cheol;Cho, Jin-Hyoung;Chae, Jong-Moon;Chang, Na-Young;Kang, Kyung-Hwa
    • The korean journal of orthodontics
    • /
    • 제41권6호
    • /
    • pp.399-410
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate the difference in frictional resistance among metal, ceramic, self-ligation brackets and coated or non-coated Ni-Ti archwires at various bracket-archwire angulations during the sliding movement of an orthodontic archwire, using an orthodontic sliding simulation device. Methods: Four types of bracket (Micro-arch Perpect Clear2 Clippy-C and Damon3 and 5 types of orthodontic archwire (0.014", 0.016", and 0.016" ${\times}$ 0.022" inch coated Ni-Ti, and 0.016" and 0.016" ${\times}$ 0.022" inch Ni-Ti) were used. Further, the bracket- archwire angles were set at 4 different angulations: $0^{\circ}$, $3^{\circ}$, $6^{\circ}$, and $9^{\circ}$. Results: The frictions from all the experimental groups were found to be significantly increased in order of self-ligation brackets, Micro-arch and Perpect Clear2 ($p$ < 0.001). The presence of a coat had no effect on the friction of the same sized archwires at $0^{\circ}$ and $3^{\circ}$ bracket-archwire angles ($p$ < 0.001). Coated archwires had significantly higher frictions than the same sized non-coated archwires at $6^{\circ}$ and $9^{\circ}$ bracket-archwire angles ($p$ < 0.001). The frictions increased significantly as the bracket-archwire angles were increased ($p$ < 0.001). Conclusions: The use of self-ligation brackets will be beneficial in clinical situations where a low frictional force is required. Further, in cases where crowding is not severe, the use of coated archwires should not cause problems. However, more additional explanation is required considering the fact that the damage of coated archwire and exposure of the metal portion in case of binding and notching and the effects of saliva were not taken into account.

Elastic force degradation of synthetic elastomeric chain (체인형 합성고무탄성재의 탄성력 감쇄)

  • HEO, Chang-Hyuck;SUNG, Jae-Hyun;KWON, Oh-Won;KYUNG, Hee-Moon
    • The korean journal of orthodontics
    • /
    • 제33권5호
    • /
    • pp.371-380
    • /
    • 2003
  • The purpose of this study was to evaluate the force degradation rate of synthetic elastomeric chains during space closing phase of orthodontic treatment. Two kinds of synthetic elastomeric chains(RMO, 3M) were selected which were commonly used In clinics. All of the samples were extended and tested for 4 weeks under the simulated intraoral condition. The results can be summarized as follows : 1. Time related residual force showed typical logarithm function. Residual force after 4 weeks was $41.2\~64.6\%$ of original force, and difference between two kinds of elastomeric chain existed. 2. Elastic force decreased greatly during first 10 minutes, so $20\~25\%$ of original force disappeared. After that, this decreasing tendency was diminished significantly, average rate of elastic force after 1 week to 4 weeks were $1.5\%$ demonstrating rather constant force. 3. Even though the same brand of elastomeric chiain was used, as extension rate of elastomeric chain increased, force degradation rate increased by decreasing of residual force.

A STUDY ON THE EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN TENS10N SIDE OF RAT MOLAR PERIODONTAL LIGAMENT FOLLOWING EXPERIMENTAL TOOTH MOVEMENT (백서 구치의 실험적 치아이동시 견인측 치근막에서 혈관성장인자의 발현에 관한 연구)

  • Lim, Yong-Kyu;Shin, Choon-Shik;Lee, Dong-Ryul
    • The korean journal of orthodontics
    • /
    • 제31권1호
    • /
    • pp.121-136
    • /
    • 2001
  • This study was performed to analyse the expression of VEGF and it's receptor(VEGFR) in the tension side of the periodontal ligament following orthodontic tooth movement. Upper first molars of Sprague-Dawley rats were moved medially using closed coil spring for 1, 2, 24 hours and 3, 7, 14 days. H&E staining, immunohistochemical staining and in situ hybridization methods were used to analyse the change of the expression of VEGF and VEGFR. The results from this study were as follows : 1. Following tensional force, periodontal ligament showed elongation of fibers, compression and congestion of vessels and regional hemorrhage. These tissue changes were recovered within 3 days of force application. New bone formation was seen after 3 days of force application and continued for the remaining experimental periods. 2. Following tensional force, VEGF and VEGF mRNA expression was increased in the periodontal ligament cells, osteoblasts and cementoblasts. This change was followed by increased vasculature in the periodontal ligament. 3. After 3 days of tensional force, VEGF and VEGF mRNA expression was confined mainly to the osteopaths and the periodontal ligament cells adjacent to the alveolar bone. After 2 weeks of force application, VEGF and VEGF mRNA expression was reduced to the level of control sample. 4. VEGFRs(Flt-1, Flk-1) showed similar expression pattern and it's expression was mainly seen in the endothelial cells and osteoblasts. Following tensional force VEGFR expression was increased in the endothelial cells and osteoblasts. In conclusion, in the tension side of the penodontal ligament, ligament cells, osteoblast and cementoblast showed increased expression of VEGF & VEGF mRNA. It preceded the increase of vasculature and new bone formation. The increased expression of VEGF mRNA in cementoblast may induce periodontal vessels, which distribute mainly the bone side half of periodontal ligament, grow in the direction of tensional force. Increased expression of VEGFR & VEGFR mRNA not only in endothelial cell but in osteoblast, osteocyte and periodontal cells showed VEGF acts not only in paracrine manner but in autocrine one.

  • PDF

THE EFFECTS OF HEAT TREATMENT OF ORTHODONTIC WIRES (교정용 강선재의 열처리 효과에 관한 실험적 연구)

  • Lee, Myeung-Suck;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • 제22권3호
    • /
    • pp.591-602
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of heat treatment on physical properties of 0.016' and 0.016' x 0.022' stainless steel wires. Temperature of heat treatment had intervals of $50^{\circ}C$ from $400^{\circ}C$ to $700^{\circ}C$, and time of heat treatment were 3, 6 and 9 minutes. Tensile tests were measured by ultimate tensile strength and yield strength. Bending tests were assessed by maximum bending force, recovery force, and stiffness. Torsion test was evaluated by torsion cycle until wires were fractured. The results were as follows: 1. In round wires, the highest value of ultimate tensile strength and yield strength were recorded of heat treatment at $500^{\circ}C$. In rectangular wires, the highest value of ultimate tensile strength were after 9 minutes at $400^{\circ}C,\;450^{\circ}C$ and 3, 6 minutes of heat treatment at $50^{\circ}C$, yield strength were the highest value after 3, 6 minutes of heat treatment at $500^{\circ}C$. 2. In both round and rectangular wires, maximum bending force and recovery force were the highest values after 6 minutes of heat treatment at $500^{\circ}C$. In round wires, highest value of stiffness were formed after 9 minutes at heat treatment at $500^{\circ}C$. In rectangular wires, the highest value of stiffness were for 6 minutes in $500^{\circ}C$. 3. In rectangular wires, torsion cycle was minimum after 6 minutes of heat treatment at $500^{\circ}C$. 4. In all of tension, bending, and torsion tests, the heat treated wires were softened over at $700^{\circ}C$. 5. In all of tension, bending, and torsion tests, physical properties of the wires were more influenced by the temperatures than the duration of the heat treatment.

  • PDF

A comparative study of frictional force in self-ligating brackets according to the bracket-archwire angulation, bracket material, and wire type

  • Lee, Souk Min;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • 제45권1호
    • /
    • pp.13-19
    • /
    • 2015
  • Objective: This study aimed to compare the frictional force (FR) in self-ligating brackets among different bracket-archwire angles, bracket materials, and archwire types. Methods: Passive and active metal self-ligating brackets and active ceramic self-ligating brackets were included as experimental groups, while conventional twin metal brackets served as a control group. All brackets were maxillary premolar brackets with 0.022 inch [in] slots and a $-7^{\circ}$ torque. The orthodontic wires used included 0.018 round and $0.019{\times}0.025$ in rectangular stainless steel wires. The FR was measured at $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ angulations as the wire was drawn through the bracket slots after attaching brackets from each group to the universal testing machine. Static and kinetic FRs were also measured. Results: The passive self-ligating brackets generated a lower FR than all the other brackets. Static and kinetic FRs generally increased with an increase in the bracket-archwire angulation, and the rectangular wire caused significantly higher static and kinetic FRs than the round wire (p < 0.001). The metal passive self-ligating brackets exhibited the lowest static FR at the $0^{\circ}$ angulation and a lower increase in static and kinetic FRs with an increase in bracket-archwire angulation than the other brackets, while the conventional twin brackets showed a greater increase than all three experimental brackets. Conclusions: The passive self-ligating brackets showed the lowest FR in this study. Self-ligating brackets can generate varying FRs in vitro according to the wire size, surface characteristics, and bracket-archwire angulation.

Directional forces using skeletal anchorage for treatment of skeletal Class II div. 1 malocclusion (Directional force와 skeletal anchorage를 이용한 골격성 II급 1류 부정교합 환자의 치험례)

  • Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • 제34권2호
    • /
    • pp.197-203
    • /
    • 2004
  • Tweed-Merrifield directional force technology is a very useful concept, especially for the treatment of Glass II malocclusion. It has contributed to treating a favorable counter-clockwise skeletal change and balanced face, while head gear force using high pull J-hook (HPJH) in an appropriate direction is also essential to influence such results. Clinicians have encountered some problems concerning patients' compliance; however skeletal anchorage has been used widely of late because it does not necessitate patients' compliance, yet produces absolute anchorage. In this case, a good facial balance was obtained by Tweed-Merrifield directional force technology using HPJH together with skeletal anchorage, which provided anchorage control in the maxillary posterior area, torque control in the maxillary anterior area, and mandibular response. This indicates 4hat skeletal anchorage can be used to reinforce sagittal and vortical anchorage in the maxillary posterior area during the retraction of anterior teeth. The author used HPJH for torque control, Intrusion, and the bodily movement of maxillary anterior teeth during on masse movement. However, it is thought that such a result nay also be achieved by substituting mini- or microscrews for HPJH. Consequently, Tweed-Merrifield directional force technology using skeletal anchorage for the treatment of Class II malocclusion not only maximiaes the result of treatment but can also minimize patients' compliance.

ELECTRON MICROSCOPIC STUDY ON TENSION ZONES OF RAT MOLAR PERIODONTIUM INCIDENT TO ORTHODONTIC TOOTH MOVEMENT (백서 구치의 교정적 치아이동중 장력측 치주조직의 반응에 관한 전자현미경적 연구)

  • Lee, Jung Hun;Lee, Ki Soo
    • The korean journal of orthodontics
    • /
    • 제17권2호
    • /
    • pp.223-248
    • /
    • 1987
  • The early tissue reactions in the periodontal tissues of the tension zones following the application of force (30gm) to the maxillary first molar teeth of the albino rats were studied by the light microscopy and electron microscopy The increase of periodontal fibroblasts was evident, particularly in 1 day survival period. Osteoblast differentiation and new bone formation on the alveolar bone surface were occurred from 1 day survival period. Mononuclear phagocytes occurred consistently and in relatively high number adjacent to and at some distance from blood vessel Extensive breakdown of collagen fibers was observed. The increase of the phagocytosis of collagen by the active fibroblasts was evident Also, collagen fibrils were sparse or lost near the macrophage.

  • PDF