• Title/Summary/Keyword: Original material

Search Result 894, Processing Time 0.035 seconds

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

Architectural and structural analysis of historical buildings: The case of Kırklareli Museum in Türkiye

  • Ercan Aksoy;Ali Ural
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.239-250
    • /
    • 2024
  • Traditional immovable cultural assets are significant in terms of societal memory and cultural continuity. Therefore, it is essential to preserve their original qualities without alteration while also assessing their resilience under various influences. This study aims to document the Kırklareli Museum building and conduct a performance analysis for potential earthquake scenarios. To this end, surveys of the structure were conducted, on-site inspections were carried out, and ground and material properties were determined for use in the analysis. The 3D model of the structure was prepared to understand its behavior during earthquakes. The analysis results indicate that there will be no damage to the structure. However, it should be noted that damage could occur in the event of a more severe earthquake than the design earthquake specified by the regulations. This study is significant not only for encompassing the museum structure but also for providing a comprehensive evaluation by determining all material properties.

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

The Study of the Changeable Table Design with Units that made of Wasted Wood (소경단목재(小輕短木材) 접목을 활용한 유니트 가변형 테이블디자인 연구개발)

  • Kim, Myeong-Tae;Seo, Seok-Min
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • This is the study about the New Formation Developement, the Changeable Table Design with Units that made of Wasted Wood to use restricted material rationally and to improve the space efficiency in the Table Design. We made some changeable table design with units that made of laminated wood wasted. And we found out the following formative characteristic and physical merits through this study. First, the space efficiency can be improve technically through the unit combination and organic transfomation of the specific form and a new method by laminated wood make the personal originality and the structral stability be built up. Second, there are some merits, moveable convenience and variable layout by the combination or transformation or personal fondness so that economical efficiency and variable of design can be improved. Third, we can remove original faults inside wood like a knot or not-uniform of wood organ when we laminate wood so that we use proper units that have original beauty of wood and can represent mild mood of furniture wholly. Fourth, much more strengthen tensile strength by the reciprocal action among the units that be made of laminated wood reduces wood's metamorphosis like bending or twisting so that the uniformity of wood can be gain and furniture's metamorphosis can be reduced. According to changes of nature environment, the difficulty of supply and demand for wood may be happen. According to changes of life style these days, supply and demand for environment friendly material, processing technique and developement of design to improve the efficiency of using space must be very important factor in morden furniture design. So we propose changeable furniture design by using new environment friendly meterial and processing method from this study.

  • PDF

A weld-distortion analysis method of the shell structures using ultra structural FE model (초대형 구조모델을 활용한 쉘구조물의 용접변형 해석)

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

Conservation Treatment and Material Analysis of Lacquered Head-wear Excavated in Ulsan Dated to Goryeo Dynasty (울산 출토 고려시대 칠사관모의 보존처리 및 재질분석)

  • Park, Hae Jin;Kwon, Young Suk
    • Journal of Conservation Science
    • /
    • v.29 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Chil-sa head-wear excavated in Buksandong of Ulsan is precious relic with historical, cultural, social and artistic values because it shows head-wear shape at the period of Goryeo dynasty with the invaluable worth in the field of Korean traditional costumes. Also, this excavated head-wear provides the empirical information about Goryeo dynasty which has relatively insufficient remains. The purposes of this study are to recover and maintain the original states of the artifacts from various environmental factors and then to preserve the materials from rapid decomposition. As a result, the original shape of the head-wear from Goryeo dynasty can be conserved and through the material and structure analysis it is found out that the head-wear's surface structure is composed of silk(紗) and the ground structure is made by bamboo(竹絲).

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.

Recycling of Organic Materials Using Purification by Recrystallization for Solution-Processed OLEDs (재결정화법에 의한 유기물 재활용 및 이를 이용한 습식 OLED 제작)

  • Lee, Jin-Hwan;Hong, Ki-Young;Shin, Dong-Kyun;Lee, Jin-Young;Park, Jong-Woon;Seo, Hwa-Il;Seo, Yu Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.65-69
    • /
    • 2016
  • We have investigated the possibility of recycling of an organic material that is wasted during thermal evaporation. To this end, we have collected a wasted organic material (N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine(NPB)) from a vacuum chamber, purified it by recrystallization, and fabricated bilayer organic light-emitting diodes (OLEDs) with the recycled NPB. It is found that the surface roughness of thin films coated with the purified NPB is much enhanced. OLEDs fabricated by thermal evaporation of the purified NPB show lower device efficiency than OLEDs with the original NPB. However, the power efficiency of OLED fabricated by spin coating of the purified NPB is comparable with that of OLED with the original NPB. Therefore, such a recycling method by recrystallization would be more suitable for solution-processed OLEDs.

Clinical Experience of the Brushite Calcium Phosphate Cement for the Repair and Augmentation of Surgically Induced Cranial Defects Following the Pterional Craniotomy

  • Ji, Cheol;Ahn, Jae-Geun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.180-184
    • /
    • 2010
  • Objective : To prevent temporal depression after the pterional craniotomy, this study was designed to examine the safety and aesthetic efficacy of the brushite calcium phosphate cement (CPC) in the repair and augmentation of bone defects following the pterional craniotomy. Methods : The brushite CPC was used for the repair of surgically induced cranial defects, with or without augmentation, in 17 cases of pterional approach between March, 2005 and December, 2006. The average follow-up month was 20 with range of 12-36 months. In the first 5 cases, bone defects were repaired with only brushite CPC following the contour of the original bone. In the next 12 cases, bone defects were augmented with the brushite CPC rather than original bone contour. For a stability monitoring of the implanted brushite CPC, post-implantation evaluations including serial X-ray, repeated physical examination for aesthetic efficacy, and three-dimensional computed tomography (3D-CT) were taken 1 year after the implantation. Results : The brushite CPC paste provided precise and easy contouring in restoration of the bony defect site. No adverse effects such as infection or inflammation were noticed during the follow-up periods from all patients. 3D-CT was taken 1 year subsequent to implantation showed good preservation of the brushite CPC restoration material. In the cases of the augmentation group, aesthetic outcomes were superior compared to the simple repair group. Conclusion : The results of this clinical study indicate that the brushite CPC is a biocompatible alloplastic material, which is useful for prevention of temporal depression after pterional craniotomy. Additional study is required to determine the long-term stability and effectiveness of the brushite calcium phosphate cement for the replacement of bone.