• Title/Summary/Keyword: Origami Robot

Search Result 2, Processing Time 0.015 seconds

Design, Fabrication and Analysis of Walking Robot Based on Origami Structure (종이 접기 구조를 활용한 단일 구동기 보행 로봇의 설계, 제작 및 분석)

  • Kim, Tae-Yeon;Lee, Seok-Hun;Lee, Gi-Jung;Lee, Dae-Young;Kim, Ji-Suk;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • Recently, there have been many researches about applications of origami to mechanical engineering, which realizes a 30 sturcture by folding a 20 plane material. With this simple manufacturing process, origami was even adopted by some roboticists as a way to build an entirely new robot with benefits in terms of cost, weight, and structural simplicity In this paper, we propose a new type of a walking robot based on origami structure. Because all the components of the robot that generate gait motion are mechanically connected, it can actually walk fotward with only a single actuator. We also showed the similarity of gait trajectories between a kinematic analysis and the actual gait motion measured by video tracking. This result proved the possibility of designing an origami-based robot with the identical gait trajectory as we plan.

Estimation of the State of Folding Structures using a Novel Sensor (종이접기 구조의 자세 파악을 위한 폴딩 센서 개발)

  • Chae, Su-Bin;Jung, Gwang-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.88-93
    • /
    • 2021
  • In this paper, a folding sensor based on capacitance is proposed. The sensor was developed to sense the length and angle data for the milli-scale actuators without causing any interference to the actuating joints. For the sensing and testing the robotic joint with reducing the cost and complexity aspects of manufacturing, a simple composition was adopted. The sensor comprises a pair of copper tapes, papers, and wires. The complete sensing unit is constructed by bonding the tapes with the papers and soldering the wire to the copper parts. For accuracy, a teensy 4.0 board, which has a 12-bit ADC resolution, is employed. Furthermore, the sensed analog data is not translated into the unit of capacitance for accuracy; however, it is filtered using a low-pass filter and subsequently, a Butter-worth filter. The data obtained demonstrate a periodic waveform, which implies that the data are in good agreement with the hypothesis set prior to the experiments. Compared to other milli-scale sensors, this could be a better option for sensing the length and angle data for milliscale actuators.