• Title/Summary/Keyword: Orifice

Search Result 1,059, Processing Time 0.035 seconds

Study on the hydraulic cylinder flow analysis of Orifice Type (Orifice Type의 유압실린더 유동해석에 관한 연구)

  • Bae, Kang-Youl;Jeoun, Jin-Seong
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.54-59
    • /
    • 2015
  • This paper is a numerical study on the correlation of leakage by the variation of operating temperature and orifice diameter applying to hydrostatic bearing in hydraulic actuator. Compared with Brackbill and Kandlikar experimental paper to verify the validity of the numerical analysis technique of the present study, we derive the result that the results of experiments and numerical analysis to match very well. CFD analysis program were analyzed using a commercial code FLUENT V14.5. Inlet and outlet, were applied pressure conditions, the main variables of the analysis is temperature and the orifice inner diameter. The analysis results, pressure value has decreased as the oil temperature and the orifice diameter increases.

A Spray Characteristics of Dual Orifice Injector with Different Fuel Properties (연료 종류에 따른 이중 오리피스 노즐의 분무 특성 연구)

  • Lee, D.H.;Choi, S.M.;Park, J.B.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.7-15
    • /
    • 2003
  • The effects of fuel density and fuel viscosity on spray characteristics were investigated under two different gas turbine fuels and various fuel supply pressure conditions through measurement of SMD, number density and volume flux by using PDPA system in dual orifice injector for gas turbine engines. In this study, we found out that the droplet size and spray structure are strongly depend on fuel density for dual orifice injector. The spray characteristics of high density fuel in dual orifice injector are similar with the characteristics of low density fuel in single orifice injector. The shear region between primary main fuel stream and secondary main fuel stream is examined in low density fuel condition but not exist in high density fuel condition, then this shear region is very important in quality of gas turbine spray. There are worth consideration for the effect of fuel density on spray characteristics in frontal device design to improve combustion efficiency.

  • PDF

A Study on the Optimal Orifice Location for Air flow Measurement in an Air Duct Leakage Tester (덕트누기시험기용 풍량측정 오리피스의 최적위치 선정에 관한 연구)

  • Lee Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • In this study, five experiments were carried out, with an orifice located downstream of a fan in case I where upstream duct length is 6 D, and that in the downstream is 4 D and different downstream distance to the fan in the rest, so as to determine the optimal location of the orifice and reduce the duct length of airflow measurement device. The resulting flow rate-pressure drop correlations were found to satisfy the limitation of SMACNA standard, which specified an error of $\pm7.5\%$ based on the real flow rate. Also, the best one of five. cases was achieved with the orifice located midway of the orifice duct four times its diameter long.

Optimal Location of Orifice in Duct Leakage Tester for Air Flow Measurement (덕트누기시험기용 풍량측정 오리피스의 최적위치 선정에 관한 연구)

  • Lee, Seung-Chul;Park, Man-Heung;Kim, Kwang-Chu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2151-2156
    • /
    • 2004
  • In this study, five experiments were carried out, with an orifice located downstream of a fan in case I and upstream distance to the fan in the rest cases(case $II{\sim}$), so as to determine the optimal location of the orifice and reduce the size of airflow measurement device. The resulting flow rate-pressure drop correlations were found to satisfy the limitation of SMACNA standard, which specified an error of ${\pm}7.5%$ based on the real flow rate. The best outcome was achieved with the orifice located midway of the orifice duct 4 times its diameter long.

  • PDF

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

Double Mitral Valve Orifice in Atrioventricular Canal Defects (방실관결손증에 동반된 이중승모판 -2례 보고-)

  • Kim, Su-Won;Jo, Beom-Gu
    • Journal of Chest Surgery
    • /
    • v.21 no.4
    • /
    • pp.757-760
    • /
    • 1988
  • Double mitral valve orifice is an unusual congenital abnormality, and is rarely of clinical importance. That abnormality not produce hemodynamic deficits, but it has been associated with other congenital heart diseases, especially atrioventricular canal defects, and so it is surgically important condition. After the first report by M.S. Greenfield in 1876, there are only a few reported cases all over the world. We experienced two cases of double mitral valve orifice with atrioventricular canal defect. The small accessory mitral orifice was placed in anterior mitral leaflet as a hole type in both cases. The A-V canal defects are corrected with a one patch technique, but the accessory orifices are left unclosed because there were no mitral regurgitations through the orifice. On the 4th postoperative day, the patients have been performed echocardiography; both had no mitral regurgitation. Both of patients are now being follow-up and we find no specific problems. A small accessory mitral orifice may be left unclosed and rarely produce significant regurgitation, conclusively.

  • PDF

An experimental study on the heat transfer augmentation by using the multiple orifice nozzle (다중 오리피스 노즐을 이용한 충돌분류의 열전달 향상에 관한 실험적 연구)

  • 김예용;정기호;김귀순;서태범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.647-657
    • /
    • 1999
  • An experimental study has been peformed to investigate the heat transfer characteristics of impinging jets with multiple orifice nozzles. Four different shapes of multiple orifice nozzle were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient and steady method based on the liquid crystal thermography, and both methods showed very similar results. The effects of multiple orifice nozzles on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that multiple orifice nozzles improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.

  • PDF

Sizing of a tube inlet orifice of a once-through steam generator to suppress the parallel channel instability

  • Yoon, Juhyeon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3643-3652
    • /
    • 2021
  • Sizing the tube inlet orifice of a Once-Through Steam Generator (OTSG) is important to protect the integrity of the tubes from thermal cycling and vibration wear. In this study, a new sizing criterion is proposed for the tube inlet orifice to suppress the parallel channel instability in an OTSG. A perturbation method is used to capture the essential parts of the thermal-hydraulic phenomena of the parallel channel instability. The perturbation model of the heat transfer regime boundaries is identified as a missing part in existing models for sizing the OTSG tube inlet orifice. Limitations and deficiency of the existing models are identified and the reasons for the limitations are explained. The newly proposed model can be utilized to size the tube inlet orifice to suppress the parallel channel instability without excessive engineering margin.

Effect of Particle Clogging in Orifices on the Particle Collection Efficiency of a Micro-Orifice Impactor (노즐 막힘이 미세 오리피스형 다단 임팩터의 입자 채취 성능에 미치는 영향)

  • Ji, Jun-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.197-205
    • /
    • 2003
  • A cascade impactor is a multistage impaction device used to separate airborne particles into aerodynamic size classes. A micro-orifice impactor uses micro-orifice nozzles to extend the cut sizes of the lower stages to as small as 0.05 ${\mu}{\textrm}{m}$ in diameter without resorting to low pressures or creating excessive pressure drops across the impactor stages. In this work, the phenomenon of particle clogging in micro-orifice nozzles was experimentally investigated for a commercial micro-orifice uniform deposit impactor (MOUDI). It was observed, using an optical microscope, that the micro-orifice nozzles of the final stages were partially clogged due to particle deposition during the aerosol sampling. Therefore the pressure drops across the nozzles were higher than the nominal values given by the manufacturer. To examine the effect of particle clogging in micro-orifice nozzles, the particle collection efficiency of the MOUDI was evaluated using an electrical method for fine particles with diameters in the range of 0.1-0.6 ${\mu}{\textrm}{m}$. The monodisperse liquid dioctyl sebacate (DOS) particles were used as test aerosols. A faraday cage was employed to measure the low-level current of the charged particles upstream and downstream of each stage. It was found that the collection efficiency curves shifted to correspond to smaller orifice sizes, and the 50-% cutoff sizes were much smaller than those given by the manufacturer for the three stages with nozzles less than 400 ${\mu}{\textrm}{m}$ in diameter.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF