• Title/Summary/Keyword: Orientation sensor

Search Result 331, Processing Time 0.026 seconds

Piezoelectric properties of (Bi0.5Na0.5)TiO3-BaTiO3 ceramics prepared by reactive templated grain growth method (Reactive Templated Grain Growth법에 의해 제조된 (Bi0.5Na0.5)TiO3-BaTiO3 세라믹스의 압전 특성)

  • Ahn, Byung-Guk
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • Crystallographically {h00}-oriented $0.94(Bi_{0.5}Na_{0.5})TiO_{3}-0.06BaTiO_{3}$ (0.94BNT-0.06BT) ceramics was prepared by the Reactive Templated Grain Growth (RTGG) method using the $Bi_{4}Ti_{3}O_{12}$ template. The sheets prepared by tape-casting of slurries containing the templates and starting materials are cut, laminated, and pressed. Then burn-out and sintering was conducted. Also, to compare with the 0.94BNT-0.06BT ceramics prepared by the RTGG method another 0.94BNT-0.06BT ceramics was prepared by the solid-state method. In the optimum of this experiments range, the degree of orientation of the 0.94BNT-0.06BT ceramics prepared by the RTGG method was texture fraction${\approx}92%$ and the piezoelectric constant($d_{33}$) and coupling factor($k_{p}$) was obtained to $d_{33}{\approx}205{\;}pC/N$, $k_{p}{\approx}0.33%$, respectively.

Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control (시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어)

  • 김정수;강영규;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

Calibration of Parallel Manipulators using a New Measurement Device (새로운 측정장비를 이용한 병렬구조 로봇의 보정에 관한)

  • Rauf, Abdul;Kim, Sung-Gaun;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1494-1499
    • /
    • 2003
  • Kinematic calibration is a process whereby the actual values of geometric parameters are estimated so as to minimize the error in absolute positioning. Measuring all components of Cartesian posture, particularly the orientation, can be difficult. With partial pose measurements, all parameters may not be identifiable. This paper proposes a new device that can be used to identify all kinematic parameters with partial pose measurements. Study is performed for a six degree-of-freedom fully parallel Hexa Slide manipulator. The device, however, is general and can be used for other parallel manipulators. The proposed device consists of a link with U joints on both sides and is equipped with a rotary sensor and a biaxial inclinometer. When attached between the base and the mobile platform, the device restricts the end-effector's motion to five degree-of-freedom and can measure position of the end-effector and one of its rotations. Numerical analyses of the identification Jacobian reveal that all parameters are identifiable. Computer simulations show that the identification is robust for the errors in the initial guess and the measurement noise.

  • PDF

Fabrication and Electric Properties of $\textrm{LiNbO}_3$ Thin Film by an Rf-magnetron Sputtering Technique Li-Nb-K-O Ceramic Target (Rf-magnetron sputtering 방법으로 Li-Nb-K-O 세라믹 타겟을 사용하여 제작한 $\textrm{LiNbO}_3$박막의 제작 및 전기적 특성)

  • Park, Seong-Geun;Baek, Min-Su;Bae, Seung-Chun;Gwon, Seong-Yeol;Kim, Gwang-Tae;Kim, Gi-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.163-167
    • /
    • 1999
  • LiNbO$_3$films were prepared by an rf-magnetron sputtering technique using sintered target containing potassium. The potassium was included to help to fabricate stoichiometric LiNbO$_3$film. Structural and electrical properties of thin films was investigated as a function of deposition condition. Optimum sputtering conditions were rf power of 100W, working pressure of 1m Torr and substrate temperature of 58$0^{\circ}C$. The thin film was grown to (012) preferred orientation. The dielectric constant of the thin film LiNbo$_3$ fabricated under optimum condition was 55 at 1MHz. Average grain size is about 200$\AA$ and roughness of the film is small enough to apply to optic devices.

  • PDF

Fish-eye camera calibration and artificial landmarks detection for the self-charging of a mobile robot (이동로봇의 자동충전을 위한 어안렌즈 카메라의 보정 및 인공표지의 검출)

  • Kwon, Oh-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.278-285
    • /
    • 2005
  • This paper describes techniques of camera calibration and artificial landmarks detection for the automatic charging of a mobile robot, equipped with a fish-eye camera in the direction of its operation for movement or surveillance purposes. For its identification from the surrounding environments, three landmarks employed with infrared LEDs, were installed at the charging station. When the robot reaches a certain point, a signal is sent to the LEDs for activation, which allows the robot to easily detect the landmarks using its vision camera. To eliminate the effects of the outside light interference during the process, a difference image was generated by comparing the two images taken when the LEDs are on and off respectively. A fish-eye lens was used for the vision camera of the robot but the wide-angle lens resulted in a significant image distortion. The radial lens distortion was corrected after linear perspective projection transformation based on the pin-hole model. In the experiment, the designed system showed sensing accuracy of ${\pm}10$ mm in position and ${\pm}1^{\circ}$ in orientation at the distance of 550 mm.

Photoluminescence Characteristics Y2O3:Eu3+ Thin Film Grown on Al2O3(0001) Substrate by PLD (PLD 방법으로 Al2O3(0001) 기판 위에 증착한 Y2O3:Eu3+ 박막의 형광 특성)

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.252-257
    • /
    • 2004
  • $Y_{2}O_{3}:Eu^{3+}$ thin films have been grown on $Al_{2}O_{3}$(0001) substrates by a pulsed laser deposition (PLD) method. The phosphor thin films were deposited at a substrate temperature of 500, 600, and $700^{\circ}C$ under the oxygen pressure of 100, 200, and 300 mTorr. The crystallinity, surface roughness and photoluminescence of the films are highly dependent on the substrate temperature and oxygen pressure. The films grown on $Al_{2}O_{3}$(0001) substrate even under the different substrate temperatures and oxygen pressures exhibited (222) preferred orientation. The luminescent spectra exhibited strong luminescence of ${^{5}D_{0}}-{^{7}F_{2}}$ transition within $Eu^{+3}$ peaking at 612 nm. The crystallinity and luminescence intensity of the films have been improved as the substrate temperature increasing. With increase of oxygen pressure from 50 to 300 mTorr, the crystallinity of the films has been uniformly decreased. The photoluminescence intensity and surface roughness have similar behaviors as a function of oxygen pressure. At 200 mTorr, both photoluminescence intensity and surface roughness show a maximum.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications (3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성)

  • Chung, Gwiy-Sang;Lee, Tae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes

  • Mosharrafian, Farhad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.931-947
    • /
    • 2016
  • The effects of nanotechnology and smartness on the buckling reduction of pipes are the main contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the governing equations are derived based on Hamilton's principal. Based on differential quadrature method (DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are investigated on the buckling of pipe. Results showed that the generated ${\Phi}$ improved sensor and actuator applications in several process industries, because it increases the stability of structure. Furthermore, using nanotechnology in reinforcing the pipe, the buckling load of structure increases.

Robot Target Tracking Method using a Structured Laser Beam (레이저 구조광을 이용한 로봇 목표 추적 방법)

  • Kim, Jong Hyeong;Koh, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.