• 제목/요약/키워드: Oriental Melon

Search Result 232, Processing Time 0.034 seconds

Quality characteristics of oriental melon Makgeolli using uncooked rice by oriental melon concentrate (참외 농축액 첨가에 따른 무증자 쌀막걸리의 품질특성)

  • Kim, Ok-Mi;Park, SunIl;Jo, Yongjun;Jeong, Yongjin
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.536-543
    • /
    • 2014
  • In this study, we examined the quality characteristics of oriental melon concentrate according to its content in the production of Makgeolli using uncooked rice. The results show that when more oriental melon concentrate was added to the Makgeolli and as the fermentation progressed, the sugar content of the Makgeolli increased. A slight increase was noted in all samples. The total acidity from the second day of fermentation did not show a significant difference according to the addition of 0.77~0.85% oriental melon concentrate. The pH of Makgeolli was slightly higher. The addition of more oriental melon concentrate after its decrease on the first day showed no significant difference in the pH. Reducing sugars in the Makgeolli slightly increase on the second day, after it rapidly decreased on the first day. The alcohol content increased as the fermentation progressed, and the Makgeolli with 9% (v/w) oriental melon concentrate added on the fourth day of its fermentation showed the highest alcohol content of 11.15%. Thus, it verified that as more oriental melon concentrate is added, the higher the alcohol content becomes. The acetaldehyde content of the alcoholic ingredients was low. The addition of and the increase in the oriental melon concentrate and the methanol were highest in the Makgeolli when 6% (v/w) oriental melon concentrate(199.08 ppm) was added. For the sensory characteristics, the Makgeolli with 6% (v/w) oriental melon concentrate showed the highest color, odor, taste and overall values of 3.60, 3.60, 2.80 and 3.60, respectively; but in general, it showed low values. The result showed that during the production of Makgeolli, oriental melon concentrate can be added, but a study on the use of a sweetener to improve the quality of the Makgeolli is desirable.

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.

Occurrence of Fuligo gyrosa Causing Slime Mold of Oriental Melon

  • Kim, Wan-Gyu;Choi, Hyo-Won;Hong, Sung-Kee;Lee, Young-Kee;Lee, Su-Heon
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.238-239
    • /
    • 2009
  • Recently, a severe slime mold infestation affected oriental melon plants in fields in Chilgok county, Gyeongbuk province, Korea. Specimens were collected from the fields and examined for identification. A species of Myxomycetes, Fuligo gyrosa, was identified based on its morphological characteristics. This is the first report that F. gyrosa causes slime mold of oriental melon.

Co-Occurrence of Two Phylogenetic Clades of Pseudoperonospora cubensis, the Causal Agent of Downy Mildew Disease, on Oriental Pickling Melon

  • Lee, Dong Jae;Lee, Jae Sung;Choi, Young-Joon
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.188-195
    • /
    • 2021
  • The genus Pseudoperonospora, an obligate biotrophic group of Oomycota, causes the most destructive foliar downy mildew disease on many economically important crops and wild plants. A previously unreported disease by Pseudoperonospora was found on oriental pickling melon (Cucumis melo var. conomon) in Korea, which is a minor crop cultivated in the temperate climate zone of East Asia, including China, Korea, and Japan. Based on molecular phylogenetic and morphological analyses, the causal agent was identified as Pseudoperonospora cubensis, and its pathogenicity has been proven. Importantly, two phylogenetic clades of P. cubensis, harboring probably two distinct species, were detected within the same plots, suggesting simultaneous coexistence of the two clades. This is the first report of P. cubensis causing downy mildew on oriental pickling melon in Korea, and the confirmation of presence of two phylogenetic clades of this pathogen in Korea. Given the high incidence of P. cubensis and high susceptibility of oriental pickling melon to this disease, phytosanitary measures, including rapid diagnosis and effective control management, are urgently required.

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

  • Kim, Hyun A;Shin, Ah-Young;Lee, Min-Seon;Lee, Hee-Jeong;Lee, Heung-Ryul;Ahn, Jongmoon;Nahm, Seokhyeon;Jo, Sung-Hwan;Park, Jeong Mee;Kwon, Suk-Yoon
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

Photoreversibility of Fruiting and Growth in Oriental Melon (Cucumis melo L.)

  • Hong, Sung-Chang;Kim, Jin-Ho;Yeob, So-Jin;Kim, Min-Wook;Song, Sae-Nun;Lee, Gyu-Hyun;Kim, Kyeong-Sik;Yu, Seon-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.312-318
    • /
    • 2020
  • BACKGROUND: Photoreversibility, a reversion of the inductive effect of a brief red light pulse by a subsequent far red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Plants use photoreceptors to sense photo signal and to adapt and modify their morphological and physiological properties. Phytochrome recognizes red light and far red light and plays an important role in regulating plant growth and development. METHODS AND RESULTS: The reversal responses of growth and fruiting characteristics were investigated to increase the yield of oriental melon (Cucumis Melo L. var. Kumsargakieuncheon) by means of controlling light quality in a plastic house. Red (R:660nm) and far red (FR:730nm) lights were subsequently irradiated on the whole stems and leaves of the oriental melon plant during growing periods, using red and far red LEDs as light sources, from 9:00 PM daily for 15 minutes. The intensities of R and FR light were 0.322-0.430 μmol m-2s-1 and 0.250-0.366 μmol m-2s-1, respectively. Compared to R light irradiation, combination of R and FR light irradiation increased the length of internode, number of axillary stems, number of female flowers, and fruit number of oriental melons. The results of treatment with R were similar to R-FR-R light irradiation in terms of length of internode, number of axillary stems, number of female flowers, and number of fruits. When FR treatment was considered, R-FR and R-FR-R-FR light irradiation had similarities in responses. These reversal responses revealed that oriental melon showed a photoreversibility of growth characteristics, flowering, and fruiting. CONCLUSION: These results suggested the possibility of phytochrome regulation of female flower formation and fruiting in oriental melon. The fruit weight of the oriental melon was the heaviest with the R light irradiation, while the number of fruits was the highest with the FR light. With the FR light irradiation, the fruit weight was not significantly higher compared to that of the control. Meanwhile, the yield of oriental melon fruits increased by 28-36% according to the intensities of the FR light due to the increases of the number of fruits.

A Report on Mixed Occurrence of Tobacco Whitefly (Bemisia tabaci) Biotypes B and Q in Oriental Melon Farms in Kyungpook Province, Korea (담배가루이 생태형 B와 Q가 같이 발생하는 경북 참외재배 지역 보고)

  • Kim, Eunsung;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.465-472
    • /
    • 2014
  • The tobacco whitefly, Bemisia tabaci, infest the Oriental melon and give significant economic damage along with its virus-vectoring activity. Various biotypes of B. tabaci have been well known and are classified depending on the severity of crop damage and insecticide susceptibility. In this study, B. tabaci adults were collected in the melon fields located in Poongchun-myeon, Andong, Korea and diagnosed on their biotypes using PCR molecular markers. From the all the 11 greenhouses, B. tabaci biotype Q was identified. In addition, biotype B adults were also found from the 4 greenhouses. These results report the first occurrence of B. tabaci at the Oriental melon farms in Gyeongbuk province with mixed infection by the two biotypes in the area.

Current Research Status of Postharvest and Packaging Technology of Oriental Melon (Cucumis melo var. makuwa) in Korea (국내 참외의 수확 후 관리 및 포장기술 연구)

  • Kim, Jung-Soo;Choi, Hong-Ryul;Chung, Dae-Sung;Lee, Youn-Suk
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.902-911
    • /
    • 2010
  • Oriental melon ($Cucumis$ $melo$ var. $makuwa$) is a popular and high-value market fruit cultivated in Korea. Consumers are becoming increasingly interested in oriental melon as a healthy diet over the past few years. However, the melons have relatively high quality loss because the fruit are mainly produced for a limited period of time in the summer season. Lack of the proper postharvest treatments and high temperature exposure at harvest or during distribution are the most critical environmental factors limiting postharvest life of fruit. This review focuses on the overview of current research studies for postharvest treatment and functional packaging technology of oriental melon in Korea. Major physiological problems of the harvest fruit include the ripening process in quality changes of the produce such as loss of weight, firmness, flavor, and decay during the storage periods. Low temperature at 7 to $10^{\circ}C$ with high relative humidity of 90 to 95% is the suitable environmental condition used to maintain the quality of fresh oriental melon. Controlled atmosphere (CA) storage or modified atmosphere (MA) packaging can be used as supplemental treatments to extend postharvest-life. For oriental melon, an optimum CA is currently recommended to be 2-3% oxygen and 5-10% carbon dioxide atmosphere. Precooling, pretreatments of ethylene action and functional packaging system can be applied to oriental melon after harvest in order to extend storage life. Major active packaging technologies are concerned with a selectively gas permeable film related to respiration of produce and the packaging applications of ethylene removal, antimicrobial, and antifogging substances to keep the effective freshness of fruit.

Use of oriental melon peel extracts to maintain the quality of Agaricus bisporus during its storage (참외과피추출물을 적용한 양송이의 저장 중 품질 변화)

  • Park, Hye Jin;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.473-482
    • /
    • 2014
  • Changes in quality of mushroom during storage are severe problem that reduce the shelf life of harvested mushrooms. This study investigates the effect of oriental melon peel extracts on maintenance of the quality of mushrooms (Agaricus bisporus). Mushrooms were dipped in solutions (distilled water, DW; 0.1% oriental melon peel extract, OMP; 0.1% ascorbic acid, AA; and OMP+AA) for 3 minutes. After the dipped mushrooms were air-dried at room temperature, they were packaged in a polypropylene (PP) films and stored at $4^{\circ}C$ and $15^{\circ}C$. The changes in the quality of mushrooms were measured in terms of their color, gas composition, firmness, and sensory evaluation during storage at $4^{\circ}C$ and $15^{\circ}C$. The antioxidant and anti-browning activities of oriental melon peel extract were measured with respect to their total polyphenol contents, total flavonoid contents, DPPH, ABTS radical scavenging, copper chelating activity and PPO inhibition activity. The samples that were dipped in all the solutions did not show significant differences in firmness and gas exchange during their storage at $4^{\circ}C$ and $15^{\circ}C$. At both storage temperatures, the OMP solution samples showed highest L value and lowest delta E value. The sensory evaluation showed that during the storage period, the overall acceptability of mushrooms treated with the OMP and OMP+AA solutions was higher than that of the untreated mushrooms. The total polyphenol and flavonoid contents of oriental melon peel extract were $4.81mg\;GAE{\cdot}g^{-1}$ and $1.18mg\;QE{\cdot}g^{-1}$, respectively. The DPPH, ABTS radical scavenging activity, copper chelating activity and PPO inhibition activity of the oriental melon peel extract lower than ascorbic acid. All these results suggest that oriental melon peel extract can be used as a natural browning inhibitor.

Pretreatment and Storage Condition of Abnormal Fermented Oriental Melon for Fermentation Use (참외주 제조를 위한 이상발효 참외의 원료전처리 및 저장조건의 확립)

  • Kim, Tae-Young;Lee, Sang-Ho;Kim, Jin-Sook;Kim, Sang-Bum
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.202-208
    • /
    • 2006
  • Since abnormal fermentation and short storage duration of oriental melon are the main problems causing loss in commercial value, it is necessary to develop a food processing method using uncommercial melon. In this study, we suggested the effective pretreatment and storage conditions of melon as the material for alcoholic beverage production. Abnormally fermented melon had smaller carbohydrate and larger moisture content than normal one, indicating that carbohydrate in normal melon was probably converted to fermented products during fermentation. The sugar content of oriental melon was increased after fruiting and the highest value $(12.4^{\circ}Brix)$ was found at 5 weeks of storage. The maximum storage duration of normal and fermented oriental melons were 25 and 7 days at $4^{\circ}C$, and 8 and 4 days at room temperature, respectively. The oriental melon for fermentation-use could be conserved after slicing for 30 days at $4^{\circ}C$ with the addition of 1.5% citric acid and for one year at $-20^{\circ}C$ with the plastic film sealing, respectively.