• Title/Summary/Keyword: Oriental Medicine Utilization

Search Result 191, Processing Time 0.018 seconds

Effect of Sasa Borealis and White Lotus Roots and Leaves on Insulin Action and Secretion In Vitro (In vitro에서 조릿대, 연근과 연잎이 인슐린 작용 및 분비에 미치는 영향)

  • Ko, Byoung-Seob;Jun, Dong-Wha;Jang, Jin-Sun;Kim, Ju-Ho;Park, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • Anti-diabetic effects of extracts and fractions of Sasa borealis (SB), white lotus roots (LR) and leaves (LL), and their mixture were determined in 3T3-L1 adipocytes and Min6 cells by investigating insulin-sensitizing activity and glucose-stimulated insulin secretion, respectively. SB, LR, LL, and mixture of SB, LR, and LL (3 : 2 : 3) were extracted using 70% ethanol, and m mixture extract was fractionated by XAD-4 column chromatography with serial mixture solvents of methanol and water. Fractional extractions were utilized for anti-diabetic effect assay. SB and LR extracts increased insulin-stimulated glucose uptake, but not as much as mixture of SB, LR, and LL. Significant insulin-sensitizing activities of 20 and 80% methanol fractions of SB, LR, and LL mixture extract were observed in 3T3-L1 adipocytes, giving 0.5 or $5\;{\mu}g/mL$ each fraction with 0.2 nM insulin to attain glucose uptake level similar to that attained by 10 nM insulin alone. Similar to pioglitazone, peroxisome proliferators-activated $receptor-{\gamma}\;(PPAR-{\gamma})$ agonist, 20 and 80% methanol fractions increased adipocytes by stimulating differentiation from fibroblasts and triglyceride synthesis. LL extract and 20, 60, and 80% methanol fractions of the mixture suppressed ${\alpha}-amylase$ activity, but did not modulate insulin secretion capacity of Min6 cells in both low and high glucose media. These data suggest 20 and 80% methanol tractions contain potential insulin sensitizers with functions similar to that of $PPAR-{\gamma}$ agonist. Crude extract of SB, LR, and LL mixture possibly improves glucose utilization by enhancing insulin-stimulated glucose uptake and inhibiting carbohydrate digestion without affecting insulin secretion in vivo.