• 제목/요약/키워드: Organizing

검색결과 2,000건 처리시간 0.023초

자기 구성 지도와 은닉 마르코프 모델을 이용한 가속도 센서 기반 행동 인식 (Activity Recognition based on Accelerometer using Self Organizing Maps and Hidden Markov Model)

  • 황금성;조성배
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.245-250
    • /
    • 2008
  • 최근 동작 및 행동 인식에 대한 연구가 활발하다. 특히, 센서가 소형화되고 저렴해지면서 그 활용을 위한 관심이 증가하고 있다. 기존의 많은 행동 인식 연구에서 사용되어 온 정적 분류 기술 기반 동작 인식 방법은 연속적인 데이터 분류 기술에 비해 유연성 및 활용성이 부족할 수 있다. 본 논문에서는 연속적인 데이터의 패턴 분류 및 인식에 효과적인 확률적 추론 기법인 은닉 마르코프 모델(Hidden Markov Model)과 사전 지식 없이도 자동 학습이 가능하며 의미 깊은 궤적 패턴을 클러스터링하고 효과적인 양자화가 가능한 자기구성지도(Self Organizing Map)를 이용한 동작 인식 기술을 소개한다. 또한, 그 유용성을 입증하기 위해 실제 가속도 센서를 이용하여 다양한 동작에 대한 데이터를 수집하고 분류 성능을 분석 및 평가한다. 실험에서는 실제 가속도 센서를 통해 수집된 숫자를 그리는 동작의 성능 평가 결과를 보이고, 행동 인식기 별 성능과 전체 인식기별 성능을 비교한다.

  • PDF

Region Identification on a Trained Growing Self-Organizing Map for Sequence Separation between Different Phylogenetic Genomes

  • Reinhard, Johannes;Chan, Chon-Kit Kenneth;Halgamuge, Saman K.;Tang, Sen-Lin;Kruse, Rudolf
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.124-129
    • /
    • 2005
  • The Growing Self-Organizing Map (GSOM), an extended type of the Self-Organizing Map, is a widely accepted tool for clustering high dimensional data. It is also suitable for the clustering of short DNA sequences of phylogenetic genomes by their oligonucleotide frequency. The GSOM presents the result of the clustering process visually on a coloured map, where the clusters can be identified by the user. This paper describes a proposal for automatic cluster detection on this map without any participation by the user. It has been applied with good success on 20 different data sets for the purpose of species separation.

  • PDF

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘 (A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps)

  • 이종섭;강맹규
    • 한국경영과학회지
    • /
    • 제31권3호
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

자동 학습 퍼지 제어기를 이용한 발전용 보일러 시스템 제어에 관한 연구 (A Study on the Boiler System Control of Fossil-Power Plant Using a Self-organizing Fuzzy Logic Control)

  • 문운철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권11호
    • /
    • pp.514-519
    • /
    • 2001
  • This Paper presents an application of a on-line self-organizing fuzzy logic controller to a boiler system of fossil-power plant. A boiler-turbine system is described as a MIMO nonlinear system in this paper. Then, three single loop fuzzy logic controllers are designed independently. The control rules and the membership functions of proposed fuzzy logic control system are generated automatically without using plant model. The simulation shows successful results for wide range operation of boiler system of fossil-power plant.

  • PDF

자기구성 퍼지제어기를 이용한 이동로봇의 구동제어 (A Self-Organizing Fuzzy Control Approach to the Driving Control of a Mobile Robot)

  • 배강열
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.46-55
    • /
    • 2006
  • A robust motion controller based on self-organizing fuzzy control(SOFC) and feed-back tracking control technique is proposed for a two-wheel driven mobile robot. The feed-back control technique of the controller guarantees the robot follows a desired trajectory. The SOFC technique of the controller deals with unmodelled dynamics of the vehicle and uncertainties. The computer simulations are carried out to verify the tracking ability of the proposed controller with various driving situations. The results of the simulations reveal the effectiveness and stability of the proposed controller to compensate the unmodelled dynamics and uncertainties.

콘텐츠 조직화를 통한 e러닝 학습환경 최적화에 관한 연구 (Exploring Optimal e-Learning Environment : The Role of Contents Organizing in e-Learning)

  • 박찬욱;강인원
    • 지식경영연구
    • /
    • 제11권1호
    • /
    • pp.115-128
    • /
    • 2010
  • The dramatic increase in e-Learning enrollments in higher education is likely to continue. These e-Learning environments have made learning much more convenient by stretching the spatial and temporal barriers. Their effectiveness, however, remains to be examined. In this research, the author explore the importance of personalization, interactivity and the important role of contents organizing in online education environment. Furthermore, the authors divide e-learning outcome into psychomotor, cognitive, and affective outcome. Indeed, e-Learning for psychomotor outcome has been viewed as impossible. The authors discuss the implications of the findings for theory and practice.

  • PDF

A Trial of Disaster Risk Diagnosis Based on Residential House Structure by a Self-Organizing Map

  • Wakuya, Hiroshi;Mouri, Yoshihiko;Itoh, Hideaki;Mishima, Nobuo;Oh, Sang-Hoon;Oh, Yong-Sun
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.3-4
    • /
    • 2015
  • A self-organizing map (SOM) is a good tool to visualize applied data in the form of a feature map. With the help of such functions, a disaster risk diagnosis based on the residential house structure is tried in this study. According to some computer simulations with actual residential data, it is found that overall tendencies in the developed feature map are acceptable. Then, it is concluded that the proposed method is an effective means to estimate disaster risk appropriately.

  • PDF

SOM을 이용한 인터넷 주식거래시장의 시장세분화 전략수립에 관한 연구 (Segmentation of the Internet Stock Trading Market Using Self Organizing Map)

  • 이건창;정남호
    • 한국경영과학회지
    • /
    • 제27권3호
    • /
    • pp.75-92
    • /
    • 2002
  • This paper is concerned with proposing a new market strategy for the segmented markets of the Internet stock trading. Many companies are providing various services for customers. However, the internet stock trading market is glowing rapidly absorbing a wide variety of customers showing different tastes and demographic information, so that it is necessary for us to investigate specific strategy for the segmented markets. General strategy so far in the Internet stock trading market has been to lower transaction fee according to the market trend. As the advent of rapidly enlarging market, however, more specific strategies need to be suggested for the segmented markets. In this respect, this paper applied a self-organizing map (SOM) to 83 questionnaire data collected from the Internet stock trading market in Korea, and obtained meaningful results.

신경망을 이용한 벡터 양자화의 코드북 설계 (A Codebook Design for Vector Quantization Using a Neural Network)

  • 주상현;원치선;신재호
    • 한국통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.276-283
    • /
    • 1994
  • 백터양자와를 위한 신경망을 사용은 그것의 적응적 설계 특성으로 더 좋은 코드북을 설계할 수 있을 것으로 기대되며, 또한 설계된 코드북의 코드워드는 자동정렬되어 실시간 탐색을 가능케 한다. 신경망의 이러한 장점을 살리기 위하여 본 논문에서는 KSFM(Kohonen`s Self-organizing Feature Map)을 수정하고, K-means 알고리즘을 결함한 새로운 코드북 설계 할고리즘을 제안한다. 실험결과로 부터 제안된 알고리즘의 성능향상과 실시간 처리를 위한 코드북의 부분탐색 가능성을 확인하였다.

  • PDF