• Title/Summary/Keyword: Organic-inorganic hybrid materials

Search Result 199, Processing Time 0.021 seconds

Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane (무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 특성 평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Noh, Hyun-Kyung
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.604-608
    • /
    • 2012
  • Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the $CaCO_3$ addition. The apparent density and thermal conductivity were increased by increasing the $CaCO_3$ addition. With an increasing amount of $CaCO_3$ powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of $CaCO_3$, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over $45{\mu}m$ in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of $CaCO_3$ with average particle size of $27{\mu}m$ led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, $Mg(OH)_2$ showed the highest thermal conductivity; on the other hand, $CaCO_3$ showed the lowest thermal conductivity.

Inorganic-organic Hybrid Proton Conductive Membranes Doped with Phosphoric Acid

  • Huang Sheng-Jian;Lee Yong Su;Lee Hoi Kwn;Kang Won Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.96-99
    • /
    • 2004
  • A new proton conductive inorganic-organic hybrid membrane doped with $H_3PO_4$ was fabricated via sol-gel process wit 3- glycidoxypropyltrimethoxysilane(GPTMS), 3-aminopropyltriethoxysilane(APTES) and tetraethoxysilane(TEOS) asprecursors. Theproto conductivity of about 3.0$\times10^{-3}S/cm$ was obtained at $120^{\circ}C$ under $50\%$ relative humidity (R.H). DTA curves showed that the thermal stability of the membrane is significantly enhanced by the presence of $SiO_2$ framework up to $250^{\circ}C$. SEM and XRD revealed that the gel is microporou and amorphous. The addition of APTES improved the conductivity of the membranes and the effect of the APTES on the conductivity was also discussed in this paper.

  • PDF

Synthesis and Luminescence Preparation of Organic/Inorganic Polymer Hybrid from Novolac Derivatives

  • Konishi, Gen-ichi;Kimura, Tsuyoshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.316-316
    • /
    • 2006
  • The preparation of an organic/inorganic polymer hybrid from a novolac derivatives is described. The hybrid was prepared by the acid-catalyzed solgel reaction of phenyl-trimethoxysilane (PhTMOS) in the presence of anisole novolac. The resulting film was transparent and showed a high heat stability. The dispersion of two components might be due to the utilization of the p-p interaction between the phenyl ring of the silica matrix and that of novolac. This makes it possible to prepare a hybrid glass having a highly content of novolac derivatives.

  • PDF

Preparation and Characterization of Proton Conductive Phosphosilicate Membranes Based on Inorganic-Organic Hybrid Materials

  • Huang, Sheng-Jian;Lee, Hoi-Kwan;Kang, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.241-247
    • /
    • 2005
  • A series of proton conductive inorganic-organic hybrid membranes doped with phosphoric acid ($H_3PO_4$) and/or triethylphosphate (PO(OEt)$_3$) have been prepared by sol-gel process with 3-glycidoxypropyltrimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) as precursors. High proton conductivity of 3.0 ${\times}$ $10^{-3}$ S/cm with composition of 50TEOS-30GPTMS-20APTES-50$H_3PO_4$ was obtained at 120 ${^{\circ}C}$ under 50% relative humidity. Thermal stability of membrane was significantly enhanced by the presence of SiO$_2$ framework up to 250 ${^{\circ}C}$. XRD revealed that the gels are amorphous. IR spectra showed a good complexation of $H_3PO_4$ in the matrix. The conductivity under 75% relative humidity was significantly improved by addition of APTES due to the increase in concentration of defected site in hybrid matrix. The effect of PO(OEt)$_3$, humidifying time, and heat-treatment were also investigated. PO(OEt)$_3$ had no improvement on conductivity and conductivity increased with humidifying time, however, decreased with heating temperature.

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan;Li, San Xi;Han, Chong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3196-3202
    • /
    • 2012
  • Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

Preparation and Properties of Inorganic-organic Hybrid $Li^+$ Ion Conductor by Sol-gel Process

  • Nishio, Keishi;Miyazawa, Tsutomu;Watanabe, Yuichi;Tsuchiya, Toshio
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Inorganic-organic hybrid Li$^+$ ion conductors were prepared by the sol-gel process. Tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG$_200$) and lithium bis (trifluoro-methylsulfony) imide were used as raw materials and $H_2O$ was used as a solvent. Hybrid Li$^+$ ion conductor prepared by the sol-gel process showed very high ion conductivities of log${\sigma}_R.T$(S/cm)=-3.73, log${\sigma}_60$(S/cm)=-3.00 at room temperature and $60^{\circ}C$, respectivery. Decomposition voltage was 3.1 V.

  • PDF

Effect of Heat Treatment on the Morphology and Transparency of Thick Inorganic-Organic Hybrid Films Prepared by the Electrophoretic Sol-Gel Deposition of Polyphenylsilsesquioxane Particles

  • Hasegawa, Koichi;Katagiri, Kiyofumi;Matsuda, Astunori;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2000
  • Thick inorganic-organic hybrid films were prepared on ITO-coated glass substrates by the electrophoretic sol-gel deposition of polyphenylsilsesquioxane particles. The morphology of the deposited films changed from the aggregate of the spherical particles to monolith by heat treatment at temperatures higher than $200^{\circ}C$. Transparency of the films was significantly improved accompanied by the morphological change of the particles. The degree of the morphological change was governed by two factors; maximum heat treatment temperature and heating rate. Transparent thick films of ca. 3$\mu\textrm{m}$ in thickness were obtained only by heat treatment at $400^{\circ}C$ for 2h with rapid heating from room temperature to $400^{\circ}C$. These films obtained were strongly adhered to the ITO-coated glass substrates and has a very smooth surface.

  • PDF

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.

Preparation of Transparent Organic-Inorganic Hybrid Hard Coating Films and Physical Properties by the Content of SiO2 or ZrO2 in Their Films (투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성)

  • Seol, Hyun Tae;Na, Ho Seong;Kwon, Dong Joo;Kim, Jung Sup;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Transparent organic-inorganic hybrid hard coating films were prepared by the addition of $SiO_2$ or $ZrO_2$, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, $SiO_2$ or $ZrO_2$ is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified $ZrO_2$ content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified $SiO_2$ content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at $SiO_2$ content above 10 wt% and $ZrO_2$ content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.

Electrical Properties of Organic/lnorganic Hybrid Composites for Insulation materials (유기/무기 복합 절연재료의 전기적 특성)

  • 깅상철;김현석;옥정빈;안명진;박도현;이건주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.78-83
    • /
    • 2001
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate content and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defect in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

  • PDF