• 제목/요약/키워드: Organic-Inorganic Solar Cell

검색결과 44건 처리시간 0.03초

유기태양전지의 개발현황 (Recent Development Status of Organic Solar Cells)

  • 방창현;박근희;정동근;채희엽
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.167-171
    • /
    • 2007
  • 세계적으로 석유자원의 고갈로 대체 에너지 중에서도 태양전지는 가장 주목받는 기술 중에 하나이며, 크게 무기물 태양전지와 유기태양전지로 구분된다. 그 중에서 유기태양전지의 변환효율은 무기물 태양전지에 상당히 미치지 못하지만, 제작공정의 비용이 낮고, 투명하고 다양한 색을 낼 수 있으며, 유연성을 띠는 장점으로 인하여 무기물 태양전지가 사용될 수 없는 시장을 중심으로 저비용 제품으로 사용될 가능성이 높아지고 있다. 현재 유기태양전지의 효율, 수명, 그리고, 안정성이 태양전지의 보급화에 중요한 이슈이며, 다양한 연구가 진행되고 있다. 본 글은 유기태양전지의 기술적 원리, 현재 개발 동향 및 이슈, 그리고 발전 방향에 대하여 정리하였다.

${\codt}$ 무기 하이브리드 재료를 이용한 플렉서블 태양전지 섬유의 개발 (Development of a flexible solar cell fiber by using an organic-inorganic hybrid materials)

  • 송준형;김주용;박정현;김구영;김영관
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.299-301
    • /
    • 2007
  • An organic-inorganic hybrid solar cell fibers with characteristics such as formability, low-cost and tailorability was developed by deposition of C60 and CuPc on fiber surface. In spite of some variation according to the temperature of ITO deposition, the maximum open circuit voltage of 0.39V was attained at $150^{\circ}C$(1000end). The resulting solar cell showed the performances Isc=0.482, Voc=0.320, FF=0.285 ${\eta}_{e}=0.044$% which are comparable to one of other types of solar cells in literature.

  • PDF

반도체형 고분자를 이용한 태양전지섬유 (A solar Cell Fiber using Semi-conductive Polymers)

  • 송준형;김주용
    • 한국염색가공학회지
    • /
    • 제20권1호
    • /
    • pp.44-47
    • /
    • 2008
  • Organic semi-conductive materials have characteristics such as the advantages of easy formability, low-cost and diversity along with moderate semi-conductive properties. In this paper, we developed a flexible organic-inorganic hybrid solar cell fiber. First, we made a solar cell on the glass and attached the solar cell on the glass fiber similarly. In the latter case, thermal deposition method was employed in order to effectively apply ITO onto fiber surface. The amount of ITO was controlled by varying the temperature from 25, 150 to $300^{\circ}C$. Optimum result was obtained at $150^{\circ}C$ where maximize the deposition amount without significant decomposition of ITO. Despite of maximum open circuit voltage of 0.39V, the resulting current was quite unstable and weak, limiting realistic applications. It was, however, concluded that the flexible solar cell fiber developed showed a possibility of low-weight application from functional clothing for military to space suit mainly due to flexibility and thus wear ability.

유기고분자 재료를 이용한 우수한 효율의 태양전지 (High power efficient solar cell using the organic polymer materials)

  • Lee, Junghoon;Park, Jukwang;Chang Seoul
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.356-357
    • /
    • 2003
  • Organic materials are suitable for use in photoelectric conversion devices. Thus, Organic semiconductors are promising materials for photovoltaic devices and other optoelectronic applications such as light emitting diodes(LED). The organic solar cell seems to be the usefulness in comparison with the inorganic solar cell in terms of workability, ease of processing, low cost, flexibility and area expansion. (omitted)

  • PDF

PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향 (The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells)

  • 김석윤;한주원;오준호;김용현
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

고효율 적층형 태양전지를 위한 유무기 페로브스카이트 (Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells)

  • 박익재;김동회
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

차세대 태양전지의 계면 개질 전략 (Interfacial Engineering Strategies for Third-Generation Photovoltaics)

  • 임훈희;최민재;정연식
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.98-107
    • /
    • 2016
  • Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.

모의 설계에 따른 Photovoltaic cells의 전기적 특성 (Electrical Properties of Photovoltaic cells depending on Simulated design)

  • 최현민;정인범;김귀열;김태완;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.36-36
    • /
    • 2010
  • Currently, there are several newly developed energy resources for the future to replace petroleum resources such as hydrogen fuel cell, solar cell, wind power, and etc. Among them, solar cell has attracted a worldwide concern, because it has an enormous amount of resources. In general, a study of solar cells can be classified in to an area of bulk type and thin-film type. Inorganic solar cells based on silicon have been tremendously developed in technology and efficiency. However, since there are many lithographic steps, high processing temperature approximately $1000^{\circ}C$, and expensive raw materials, a manufacturing cost of device are nearly reaching a limit. Contrary to those disadvantages, organic solar cells can be manufactured at room temperature. Also, it has many advantages such as a low cost, easy fabrication of thin film, and possible manufacture to a large size. Because it can be made to be flexible, research and development on solar cells are actively in progress for the next generation. ever though an efficiency of the organic solar cell is low compared to that of inorganic one, a continuous study is needed. In this paper, we report optimal device structure obtained by a program simulation for design and development of highly efficient organic photovoltaic cells. we have also compared simulated results to experimental ones.

  • PDF

고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층 (Inorganic charge transport materials for high reliable perovskite solar cells)

  • 박소정;지수근;김진영
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.