• Title/Summary/Keyword: Organic wastewater

Search Result 1,235, Processing Time 0.03 seconds

A Study on the Filtration of Swine Anaerobic Digestate Using Multi-Layered Compost Beds (다층구조의 퇴비단을 이용한 돈분뇨 슬러리 혐기소화액의 여과효과에 대한 연구)

  • Han, Deug-Woo;Lee, Dong-Hyun;Kim, Jung-Gon;Yang, Seung-Hak;Bae, Jin-Woo;Kwag, Jung-Hoon;Choi, Dong-Yoon;Jeong, Kwang-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.72-81
    • /
    • 2013
  • The objective of this study was to verify whether SCB(Slurry Composting & Bio-filtration) system can be applied for the treatment of anaerobic digestion(AD) wastewater and also, to identify the most effective set among three filtration compost beds tested. Results can be summarized as these; (a) When AD wastewater was sprayed on the top of beds which were mainly composed of sawdust and/or other media and, subsequently, filtrates collected and analyzed, there were large drop in the values of Electric Conductivity(EC), Total Suspended Solid(TSS), Biochemical Oxygen Demand(BOD), and Chemical Oxygen Demand(COD). In contrast, Total Nitrgen(T-N) and Total Phosphorus(T-P) were progressively elevated. We consider these changes as positive if the filtrate are to be utilized as liquid fertilizer. (b) When three sets of filtration beds (T1, T2, T3) were compared for their effectiveness, no significant difference was found among them. These indicate that expensive sawdust can be replaced in part with cheaper media such as woodchip, rice husks, or others. (c) At early stage of operation (within 20 days), BOD in filtrates were maintained at high level probably due to the lack of microbial activity. During the same stage, T-N, T-P was at low level but, were elevated to higher levels thereafter. These data, when combined, indicate that the filtration system needs at least a couple of weeks for the optimized microbial functioning. (d) The temperatures of the experimental beds were progressively dropped as the experiment continued through the fall season, although filtration effectiveness was not noticeably influenced.

Effects of C/N Ratio on Removal of Organic Matter and Nitrogen in Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactor (교대로 간헐 포기되는 부직포 여과막 생물반응조에서 C/N비가 유기물 및 질소 제거효율에 미치는 영향)

  • Ahn, Yun-Chan;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.499-506
    • /
    • 2005
  • This study was performed to investigate the effects of influent C/N ratio on the removal of organic and nitrogenous compounds by two nonwoven fabric filter bioreactors. The reactors were alternately aerated at an aeration/nonaeration period ratio of 60 min/60 min, and fed with wastewater only during nonaeration period. The influent C/N ratio (COD/TKN) was gradually reduced from 10 to 2. The influent was prepared by diluting the leachate from a foodwaste treatment facility in I city so that the COD concentration could be about 2,500 mg/L. The C/N ratio of the wastewater was adjusted by adding ammonium chloride. The results of the experiment showed that the COD and BOD concentration of the effluent was $40{\sim}54\;mg/L$ and $1{\sim}4\;mg/L$, respectively at the C/N ratios of $10{\sim}3$, and the effluent SS concentration was always below 2.0 mg/L. The T-N removal efficiencies were 96% or higher at C/N ratios of $10{\sim}5$, but decreased to 83% and 81%, respectively at the C/N ratios of 3 and 2.8. At the C/N ratios of 2.6 and 2, the effluent quality deteriorated due to ammonia toxicity. The fraction of nitrifying microorganism in the reactors increased from 10% to 20% as the C/N ratio decreased from 5 to 2.6. Alkalinity consumed were $3.12{\sim}3.49\;g$ alkalinity/g T-N removed at the C/N ratios of $10{\sim}5$, which are lower than the theoretical value of 3.57. However, the ratio increased to 4.63 and 4.87 g alkalinity/g T-N removed, respectively at the C/N ratios of 3 and 2.8.

Evaluation of biological treatment of cutting-oil wastes using sequencing batch reactor (SBR) process (연속 회분식 반응조 (SBR) 공정을 이용한 폐절삭유의 생물학적 처리능 평가)

  • Baek, Byung-Do;Kim, Chang-Seop;Kim, Jun-Young;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1654-1660
    • /
    • 2009
  • Two different cutting-oils from H and B companies which are sold as an eco-friendly cutting-oils were selected and the biodegradability of these commercially available cutting-oils was evaluated by the sequencing batch reactor (SBR) processes. The cutting-oil wastes ($H_1$) pre-treated by coagulation/flocculation was used as an influent to SBR. When the F/M ratio was operated 0.04 to 0.08kgCOD/kgMLSS d, removals of $BOD_5$and $COD_{Cr}$were above 97% and 91%, respectively. T-N and T-P removals were above 76% and 81%, respectively. If the diluted cutting-oil wastes ($B_1$) was used as an influent of the SBR, $COD_{Cr}$removals were above 77% at the F/M ratio of 0.01-0.02kgCOD/kgMLSS d. After the cutting-oil wastes was treated by coagulation/ flocculation ($B_2$), $COD_{Cr}$removals was above 85%. If the pre-treated cutting-oil wastes were mixed with a synthetic wastewater ($B_3$) and fed into the SBR in order to mimic the real wastewater treatment plant situation, $BOD_5$and $COD_{Cr}$removals were above 97%, 91%, respectively. T-N and T-P removals were above 79% and 76%. The ratio between $BOD_5$and $COD_{Cr}$, ($COD_{Cr}$-$BOD_5$)/$COD_{Cr}$, indicating the biodegradability of effluent of the SBR, was calculated to 85% and 61%. This means that significant amounts of non-readily-biodegradable organic compounds in the effluent of $H_1$, $B_3$are still present.

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.

Polycyclic Aromatic Hydrocarbons in Industrial Organic Sludge from Wastewater Treatment Facilities in Korea (폐수처리시설에서 발생된 유기성 슬러지에 함유된 다환방향족탄화수소의 농도 특성)

  • Nam, Seong-Nam;Lee, Mi-Young;Yeon, Jinmo;Jeon, Taewan;Shin, Sun Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.574-582
    • /
    • 2012
  • This study presents the concentrations of the polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by United States Environmental Protection Agency (US EPA), in 98 sludges from 54 industrial wastewater treatment facilities of South Korea. The mean concentrations of ${\Sigma}_{16}PAHs$ were ranged from 32.5 ${\mu}g/kg-dw$ to 1189.3 ${\mu}g/kg-dw$ by industries, and the highest content was found in the petrochemical industry, followed by chemical, clothing manufacturing and dying, pulp and papermaking, secondary wastewater treatment, and food/beverage producing industries. Comparisons to the EU and Danish standards of ${\Sigma}_{16}PAHs$ in sewage sludge for land application showed only two samples (one from petrochemical, and the other from chemical industry) exceeded the limits. ANOVA test with PAH concentrations as variables revealed no statistically significant influences by industrial types and sampling time (i.e., seasonal variations). Pearson correlations between individual PAHs showed strong relationships (r>0.7) among 4-ring PAHs. Concentrations of acenaphthylene, anthracene, fluoranthene, benzo(a)anthracene, benzo(f)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene presented strong correlations to ${\Sigma}_{16}PAHs$. Principal component analysis discriminated entire samples into three groups by two principal components (PC1 and PC2) with 70% of data variations, in which industrial types were not of importance, but a dominance of certain PAHs. Samples in group-I, which is high PC1 and low PC2, were characterized by a dominance of 2-ring PAHs, and in group-II, PC1 and PC2 showed a linear relation, was dominant 4-ring PAHs. Group-III with low PC1 and high PC2 includes 17 samples showing a noticeably high contribution of 3-ring PAHs to ${\Sigma}_{16}PAHs$. This study provides concentrations of PAHs in industrial sludges collected from a wide variety of sources (six industrial types) and two seasons of sampling events, and the comparison of ${\Sigma}_{16}PAHs$ with other studies are also discussed.

Developments of Water Treatment System by Biological Fluidized Bed for Water Reuse Aquaculture (생물학적 유동층을 이용한 어류양식 순환수의 처리씨스템 개발)

  • LEE Ki-Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.380-391
    • /
    • 1993
  • The experimental study was made to propose the treatment method of wastewater in the high-density fish culture system. The BOD to COD ratios of effluents were almost same to 0.65 in the eel-farm, but were various in the farm rearing together with tilapia etc. A BOD rate curve of the eel-farm effluent could be described mathematically by the equation, $BODu=14.1(1-10^{-0.222t})+30.9(1-10^{-0.035(t-8)})$. Nitrification in Biological Fluidized Bed(BFB) system to treat the fish-farm wastewater could be reduce ammonium level up to $65{\sim}79\%$ when ammonium loading rates were between 0.014 and 0.075g $NH_4/g$ BVS-day. Nitrification efficiency was decreased by organic matters in the wastewater when ammonium loading was low(0.014 g $NH_4/g$ BVS-day). T-N removal ratios were decreased to increase loading in denitrification process, because of low C/N ratio. Based on much higher biological mass concentrations, BFB system takes many advantages of a practical viewpoint, such as stability of treatment efficiency and reduction of necessary site area for the facility, as compared with conventional treatment systems.

  • PDF

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Changes of Nitrifying Bacteria Depending on the Presence and Absence of Organic Pollutant in Nak-Dong River (낙동강에서의 유기성 오염 유무에 따른 질화세균의 변화)

  • Jin, Seon-Yeong;Lee, Young-Ok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • This study was performed at 2 sites of Nak-Dong River to investigate the changes of nitrifiers depending on the presence and absence of organic pollutants (due to the effluents of domestic wastewater treatment plant, WWTP). Conventional chemical parameters such as T-N, $NH_4$-N, $NO_2$-N, $NO_3$-N were measured and the quantitative nitrifiers at the 2 sites were analyzed comparatively by fluorescent in situ hybridization (FISH) with NSO190 and NIT3, after checking the presence of gene amoA of ammonia oxidizing bacteria (AOB) and 16S rDNA signature sequence for Nitrobacter sp. that belongs to nitrite oxidizing bacteria (NOB). Also ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria were detected using FISH to get a glimpse of the general bacterial community structure of the sites. Based on the distribution structure of the ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria and the measurement of nitrogen in different phases, it could be said that the site 2 was more polluted with organics than site 1. Corresponding to the above conclusion, the average numbers of AOB and NOB detected by NSO160 and NIT3, respectively, at site 2 [AOB, $9.3{\times}10^5$; NOB, $1.6{\times}10^6$ (cells/ml)] was more than those at site 1 [AOB, $7.8{\times}10^5$; NOB, $0.8{\times}10^6$ (cells/ml)] and also their ratios to total counts were higher at site 2 (AOB, 27%; NOB, 34%) than those at site 1 (AOB, 18%; NOB, 23%). Thus, it could be concluded that the nitrification at site 2 was more active due to continuous loading of organics from the effluents of domestic WWTP, compared to site 1 located closed to raw drinking water supply and subsequently less polluted with organics.

Vermicomposting Condition and Safety/Fertility of Earthworm Casts (지렁이를 이용한 퇴비화 조건과 분변토의 비료성·안전성에 관한 연구)

  • Song, Jun-Sang;Lee, Kil-Chul;Chun, Sung-Hwan;Choi, Hun-Keun;Cho, Kyung-Hee;Kim, Sun-il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.85-102
    • /
    • 1993
  • This study was conducted to achieve develop organic sludge recycling technology as sludge make a prey of earthworm. Therefore sludge treatment and recycling technology is an important field by which this research project to solve landfill site and reduction treatment expense using vermicomposting treatment process on the waste sludge from the biological wastewater treatment plant. In experimental results on the optimum conditions of vermicomposting of nightsoil treatment sludge, survival rates were observed 98.3% in temperature of $10-15^{\circ}C$, 75% in pH 5.8-7.5 and 100% in density of $1/79.8cm^3$, respectively. Liveweight changes of earthworm were increased 266% in temperature of $10-15^{\circ}C$, 227% in pH 5.8-7.5 and 325 % in density $1\;cap./79.8cm^3$, respectively. Casting production rate were generated 0.06 g/cap./day in temperature $20-25^{\circ}C$, 0.065 g/cap./day in pH 5.8-7.5 and 0.1 g/cap./day in density $1\;cap./79.8cm^3$, respectively. Cocoon production numbers were observed 3.8 ea. /cap.in $10-15^{\circ}C$, 2.95 ea./cap.in pH 5.8-7.5 and 3.16 ea./cap. in $1\;cap./79.8cm^3$ during 6 weeks, respectively. pH was droped by 6.2 to 5.7, volatile solids was decreased by 2.9%, $NH_3-N$ were also reduced by $6.984{\mu}g/g$ to $0.991{\mu}g/g$. $NO_3-N$, however, were increased by $3.213{\mu}g/g$ to $7.706{\mu}g/g$. Fecal coliforms and pathogenic bacteria are analyzed by microbiological method to assess public health safety of casting. Number of fecal coliform groups were reduced 88.6-99.1% (Avg. 95.7%) approximately. And pathogenic bacteria such as Salmonella, Shiegella and Vibrio, were not isolated from the earthworm cast.

  • PDF

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.