• Title/Summary/Keyword: Organic wastewater

Search Result 1,238, Processing Time 0.032 seconds

Applications of Radiocarbon Isotope Ratios in Environmental Sciences in South Korea (방사성탄소동위원소비 분석을 적용한 우리나라 환경과학 연구)

  • Neung-Hwan Oh;Ji-Yeon Cha
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.281-302
    • /
    • 2023
  • Carbon is not only an essential element for life but also a key player in climate change. The radiocarbon (14C) analysis using accelerator mass spectrometry (AMS) is a powerful tool not only to understand the carbon cycle but also to track pollutants derived from fossil carbon, which have a distinct radiocarbon isotope ratio (Δ14C). Many studies have reported Δ14C of carbon compounds in streams, rivers, rain, snow, throughfall, fine particulate matter (PM2.5), and wastewater treatment plant effluents in South Korea, which are reviewed in this manuscript. In summary, (1) stream and river carbon in South Korea are largely derived from the chemical weathering of soils and rocks, and organic compounds in plants and soils, strongly influenced by precipitation, wastewater treatment effluents, agricultural land use, soil water, and groundwater. (2) Unprecedentedly high Δ14C of precipitation during winter has been reported, which can directly and indirectly influence stream and river carbon. Although we cannot exclude the possibility of local contamination sources of high Δ14C, the results suggest that stream dissolved organic carbon could be older than previously thought, warranting future studies. (3) The 14C analysis has also been applied to quantify the sources of forest throughfall and PM2.5, providing new insights. The 14C data on a variety of ecosystems will be valuable not only to track the pollutants derived from fossil carbon but also to improve our understanding of climate change and provide solutions.

Oxygen Transfer System in Biological Fluidised Bed Using the Deep Shaft as Aeration Device (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 폐수처리(廢水處理)에 있어서의 심층(深層) 폭기장치(曝氣裝置)에 의한 산소전달(酸素傳達) 시스템)

  • Kim, Hwan Gi;Ahn, Song Yeob;Jeong, Tae Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • This paper is concentrated on the development of oxygen transfer system by U-tube deep shaft in biological fluidised bed process. The depth of the shaft is 32 m, it is composed of downcomer and riser. Not only flow pattern and oxygen transfer in the deep shaft but also oxygen limitation in biofilm and oxygen utilization in biological fluidised bed are investigated. In this investigation, driving force for liquid circulation in the deep shaft is affected by air injection depth and gas hold-up in downcomer. Flow pattern of the deep shaft is revealed to plug flow. When flow velocity in the deep shaft is maintained to 0.52 m/sec, $K_La$ value is peak at 25~30 m depth in riser. The efficiency of dissolved oxygen supply which passed from the deep shaft to biological fluidised bed is estimated to 56~81 % in the organic wastewater treatment using the deep shaft and when dissolved oxygen concentration is 9.2 mg/l and over, limiting factors of flux and substrate within biofilm are organic materials. Terefore, organic loadings could be increase without decreasing of BOD removal efficiency.

  • PDF

Operation of Sewage Sludge Composting Plant(Capacity of 1 ton/day) (1톤/일 처리규모의 하수슬러지 퇴비화 실증운전)

  • Joung, Kyong-Chul;Kwak, No-Hyuk;Park, Sung-Hee;Phae, Jae-Kuen
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Aim to get operation factors, an In-vessel Composting of Wastewater Sludge was operated. The composting equipment is consisted of three chamber, 1st, 2nd and 3rd consequently. In the results, the temperature of fermentation had shown that 1st fermentation chamber(F/C) temperature was higher than that of 2nd and 3rd fermentation chamber. The temperature was steady in all steps during the sludge being composted, the ranges of each step were $50^{\circ}{\sim}59^{\circ}C$ of 1st F/C, $41^{\circ}{\sim}50^{\circ}C$ of 2nd F/C, and $32^{\circ}{\sim}37^{\circ}C$ of 3rd F/C. Organic material content of the end product was 28% and that of pH was 7.5. Properties of the compost which have been composted on optimized condition, were shown that is acceptable to use as a fertilizer. Even in the winter time, the composting system was working well without any trouble. According to result of investigation, the end-product of the system was satisfied with the standard for a fertilizer usage. HRT(hydraulic retention time) of entire process was appropriated to be 14 days(0.9 days at drying and 3.5, 4.4, 5.2 days at each step of fermentations, respectively).

  • PDF

Sustainability Indices (=Green Star) for Microbial Fuel Cell (미생물 연료전지 영속발전 지표개발)

  • Song, Ha-Geun;KOO, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.47-52
    • /
    • 2015
  • A microbial fuel cell (MFC) is a device that can be obtained electricity from a variety of organic through the catalytic reaction of the microorganism. The MFC can be applied to various fields, and research is required to promote the performance of the microbial fuel cell for commercialization. The lower performance of an MFC is due to oxygen reduction at the cathode and the longer time of microbial degradation at anode. The MFC amount of power is sufficient but, in consideration of many factors, as a renewable energy, now commonly power density as compared to Nafion117 it is an ion exchange membrane used is PP (Poly Propylene) from 80 to about 11 fold higher, while reducing the cost to process wastewater is changed to a microporous non-woven fabric of a low cost, it may be energy-friendly environment to generate electricity. All waste, in that it can act as a bait for microorganisms, sustainability of the microbial fuel cell is limitless. The latest research on the optimization and performance of the operating parameters are surveyed and through the SSaM-GG(Smart, Shared, and Mutual- Green Growth) or GG-SSaM(Green Growth - Smart, Shared, and Mutual) as the concept of sustainable development in MFC, the middle indices are developed in this study.

Environmental Characteristics and Distributions of Marine Bacteria in the Surface Sediments of Kamak Bay in Winter and Summer (동 . 하계 가막만 표층 퇴적물의 환경특성과 해양미생물의 분포)

  • Lee, Dae-Sung;Kim, Yun-Sook;Jeong, Seong-Yun;Kang, Chang-Keun;Lee, Won-Jae
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.755-765
    • /
    • 2008
  • To investigate correlation between the distribution of marine bacteria and environmental characteristics in the surface sediments of Kamak Bay, chemical oxygen demand(COD), acid volatile sulfide(AVS), ignition loss(IL), total organic carbon(TOC), and total organic nitrogen(TON) were measured and analyzed at 7 stations in winter and summer. In winter, COD and AVS ranged from 13.45 mg/g to 30.06 mg/g(average: 23.58 mg/g) and from 0.03 mg/g to 1.04 mg/g(average: 0.63 mg/g), respectively. IL, TOC, and TON ranged from 8.03% to 11.41%(average: 9.41%), from 1.17% to 2.10%(average: 1.62%), and from 0.09% to 0.18%(average 0.15%), respectively. In summer, COD, AVS, IL, TOC, and TON ranged from 14.06 mg/g to 32.19 mg/g(average: 24.71 mg/g), from 0.03 mg/g to 1.11 mg/g(average: 0.66 mg/g), from 9.00% to 12.15%(average: 10.96%), from 1.27% to 2.12%(average 1.77%), and from 0.12% to 0.19%(average: 0.16%), respectively. These values were relatively higher than those in winter. Kamak Bay had high C/N ratio that might be resulted from the input of terrestrial sewage and industrial wastewater. The number of marine viable bacteria was $8.9{\times}10^4\;cfu/g$ in winter and $9.7{\times}10^5\;cfu/g$ in summer. The most abundant species were Pseudomonas spp., Flavobacterium spp., and Vibrio spp, in the surface sediments of Kamak Bay. It was found that the concentration of organic matters and viable bacterial cells in the inner part were relatively higher than those in the outer of Kamak Bay. The distribution of viable bacterial cells was closely influenced by environmental factors.

Denitrification of Synthetic Wastewater in Submerged Biofilter (침지식 여과조를 이용한 합성 폐수의 탈질화)

  • 오승용;조재윤;김인배
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.335-346
    • /
    • 1997
  • Denitrification is one of the important processes of removing nitrate from in recirculating aquaculture systems. And this process is affected by many factors such as external organic carbon sources, hydraulic retention time (HRT), COD/NO3--N (C:N) ratio, etc. However, not many studies were done for the optimum conditions of denitrification in the recirculation system for aquaculture. Therefore, this study was conducted to find out the optimum removal condition of NO3--N using submerged denitrification biofilter. The combinations of two external organic carbon sources (glucose and methanol), two HRT (4 and 8-hour) and four differnent C : N ratios (3, 4, 5, 6) were tested. The removal efficiencies of NO3--N and total inorganic nitrogen (TIM) at 8-hour HRT were better than those at 4-hour's (P<0.05). The maximum removal efficiency of NO3--N by methanol (97.8%) was achieved at HRT and C : N ratio were 8-hour and 4.0 respectively. The efficiencies of methanol for the removal of NO3--N and TIN were always better than those of glucose (P<0.05). The maximum removal efficiencies of total inorgainc nitrogen (TIN) were gained at C : N ration of 5.0. The maximum removel efficiencies of TIN using methanol and glucose were 96.9% and 71.5% respectively. Anaerobic condition which is necessary for denitrification process was not made until the 8-hour HRT and higher C : N ratio (5.0). Removal of NO3--N at 4-hour HRT and C : N ration lower than 5.0 were inhibited by oxygen and/or low quantity of external organic carbon. Removal efficiencies of NO3--N were also inhibited by high C : N (6.0) ratio when HRT was 8-hour.

  • PDF

Design of waste Sludge/Food Waste Biological Treatment Process using Closed ATAD System (밀폐형 ATAD system을 이용한 하수슬러지/음식물쓰레기 통합처리 공정 설계)

  • Kwon, Hyeok-Young;Ji, Young-Hwan;Song, Han-Jo;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.129-137
    • /
    • 2000
  • In this study, biological treatment process of MWWT(Municipal wet-waste Treatment) has been developed through a moduling of the containerized closed ATAD(Auto thermal aerobic digestion) system & closed vertical dynamic acerator, which were used for food waste and cattle manure, respectively. Though biological process has several advantages such as low concentrations of heavy metals and salts, proper and stable C/N ratio and constant reaction rate against the process treating two wastes separately, it has a obstacles of salt concentration and much usage of bulking agent such as wood chip. After rapid oxidation in the boxed tower reactor for 5 days, the content of sewage sludge would be reduced 65% on around, might be mixed with the food waste that had been treated in the static closed reactor during 6 days and put in the secondary static reactor for curing. During composting process, the odor contained in the gas generated from the reactor was removed by passing it through a biofilter as well as the leachate was treated in the wastewater treatment facility. Consequently, it seemed to be possible to compost sewage sludge at mild and stable operating condition and at low cost through the biological ATAD process resulting in the production of organic compost satisfying the specifications regulated by itself.

  • PDF

The Effects of Earthworm Casts on Growth of Plants (지렁이 분변토가 식물성장에 미치는 영향)

  • Song, Jun-sang;Lee, Kil-Chul;Chun, Sung-Hwan;Lee, Min-Do;Cho, Kyung-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.2
    • /
    • pp.237-258
    • /
    • 1993
  • Objectives in this study are to stabilize the organic sludges which were produced from papermill wastewater, nightsoil treatment facilities and utilized as foods for earthworm, to find the method for using the cast which was orginated by earthworm as fertilizer, and ultimately to develop the practical technique to solve the environmental problems by optimization of wastes treatment. The results of this study were summarized as follows. In the investigation for fertilizer effect of cast, germination rates of cucumber, tomato, and cabbage were investigated. The germination status of 3 types of plants was excellent as over 90% in the combination case of 30-45% cast. In the investigation for fertilizer effect of cast derived from nightsoil sludge, the growing status of cucumber, tomato, and cabbage was excellent in the combination case of 30-45% cast. In the experiment for fertilizer effect investigation of cast derived from papermill sludge, the growing status of cucumber, tomato, and cabbage was excellent in the combination case of 30-45% cast. Also, in the combination case of 60% cast, plants growth was not disturbed.

  • PDF

Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM) (포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Yong-Jae;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.317-330
    • /
    • 2009
  • To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

Biofilm Processes for Volume Decrease in Recirculating Water Treatment Systems for Aquaculture

  • Kim Jeong-Sook;Yoon Gil-Ha;Ghim See-Jun;Kang Lim-Seok;Lee Byung-Hun
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.242-249
    • /
    • 1998
  • The engineering aspect of water treatment processes in the recirculating aquaculture system was studied. To recycle the water in the aquaculture system, a wastewater treatment process was required to maintain high water quality for the growth and health of the cultured fish. In this study, three different biofilm processes were used to reduce the concentration of organic matters and ammonia from the recirculating water - two phase fluidized bed, three phase fluidized bed, and trickling filter. The objectives of this research were to evaluate the optimum treatment conditions of the biofilm processes for the recirculating aquaculture system, and thereby reduce the volume of biofilm processes, which are commonly used for the recycle water treatment processes for aquaculture. The result of this study showed that the removal efficiency of organic matters by trickling filter was found to be lower than that of the fluidized bed. In the trickling filter system, anthracite showed better organic removal efficiency than crushed stone as a media. In the two phase fluidized bed, the maximum removal efficiency of either organics or ammonia was obtained when both the packing rate of media was maintained to $40\%$ of total reactor depth excepting sediment zone and the bed expansion rate was maintained to $100\%$. When 100 tilapia (Oreochromis niloticus) of each average 200g was reared, the pollutant production rate was 0.07g $NH_4\;^+-N/kg$ fish/day and 0.06g P04-3-P/kg fish/day, and sludge production rate was 0.39 g SS/kg fish/day. In the two phase and three phase fluidized bed, the volume of water treatment tank could be calculated from an empirical equation by using the relationship between the influent COD to $NH_4\;^+-N$ ratio (C/N, -), media concentration (Cm, g/L), influent ammonia nitrogen concentration (Ni, mg/L), effluent ammonia nitrogen concentration (Ne, mg/L), bed expansion rate $(E,\;\%)$, and influent flowrate $(Q,\;m^3/hr)$. The empirical equation from this study is $$V_2\;=\;10^{3.1279}\;C/N^{3.5461}\;C_m\;^{-3.7473}\;N_i\;^{4.6477}\;E^{0.0326}\;N_e\;^{-0..8849}\;Q\;(Two\;Phase\;FB) V_3\;=\;10^{11.7507}\;C/N^{-1.2330}\;C_m\;^{-6.5715}\;N_i\;^{1.5091}\;N_e\;^{-1.8489}\;Q (Three\;Phase\;FB)$$

  • PDF