• Title/Summary/Keyword: Organic sulfur compounds

Search Result 103, Processing Time 0.024 seconds

Complex odor removal in pilot-scale biofilter with microorganisms immobilized on polymer gel media (미생물 포괄고정화 담체를 적용한 파일럿 스케일 바이오필터에서의 복합악취 제거)

  • Kim, Sun-Jin;Kim, Tae-Hyeong;Lee, Yun-Hee;Jang, Hyun-Sup;Song, Ji-Hyeon;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.741-750
    • /
    • 2011
  • A pilot-scale biofilter was constructed to discover degradation characteristics of the complex odor discharged from Ansan wastewater treatment plant. Candida tropicalis for volatile organic compounds, sulfur oxidizing bacteria(SOB) for hydrogen sulfide, and bacteria extracted from feces soil were immobilized on a polymer gel media. According to this study, the EBCT was varied from 36 sec to 18 sec. Toluene was removed as 80% along the variations, but it was recovered as 100% within 1 week. All benzene and xylene were removed during the operation while the efficiency of hydrogen sulfur was temporary decreased at 18 sec of EBCT, thereafter it was recovered to 100% within a week. The maximum elimination capacities of the benzene, toluene, xylene, and hydrogen sulfur were 6.6 g/$m^{3}$/hr, 31.7 g/$m^{3}$/hr, 7.8 g/$m^{3}$/hr, and 133.6 g/$m^{3}$/hr, respectively. There were merits on removal both organic and inorganic complex odor using the pilot-scale biofilter embedded with microorganisms immobilized on polymer gel media.

Emission Characteristics of Odor Compounds in a Charcoal Production Kiln (숯가마 배가스 중 악취물질의 배출특성)

  • Park, Seong-Kyu;Choi, Sang-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Daekuen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.

The Composition of Odor Compounds Emitted from Municipal Solid Waste Landfill (도시 생활폐기물 매립지에서 발생되는 악취물질의 조성에 대한 연구)

  • Son, Youn-Suk;Kim, Jo-Chun;Kim, Ki-Hyung;Lim, Bo-A;Park, Kang-Nam;Lee, Woo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • In this study, sampling and analysis was carried out for 13 compounds, in order to investigate the odorous compound emissions from landfill stacks and surrounding ambient air. These results revealed that concentration of hydrogen sulfide was $0.13{\sim}0.66\;ppb$ in the ambient air. Also, concentrations of hydrogen sulfide ($151{\sim}358\;ppm$) were the highest value in odorous sulfur compounds from landfill stacks. In case of VOC, toluene was obtained the highest out of volatile organic compounds. It was found that the concentrations of hydrogen sulfide near the landfill was higher than that inside city such as Seoul although it was located in a rural area. The result was due to the effect of hydrogen sulfide emitted from landfill stacks.

Distribution of the Sulfur Compounds and Volatile Organic Compounds in Yosu Industrial Area (여수산단주변지역의 황화합물 및 VOCs 농도분포)

  • 서성규;전준민;문정선;윤형선;정경훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.310-311
    • /
    • 2002
  • 악취는 인간이 직접 후각으로 느끼는 환경오염의 지표로서 극히 낮은 농도에서도 피해를 유발하여 대기질 전반에 대한 불신을 초래하게 된다. 악취의 주요 발생원으로는 정유공장, 화학공장, 하수처리장, 분뇨 및 축산폐수처리장, 쓰레기 매립지 등으로 발생원이 매우 다양하고 여러 가지 복합된 화합물이 원인이 되어 악취를 유발시키는 것이 특징이다. 우리나라의 주거여건은 주변환경을 충분히 고려하지 못한 개발로 공업지역과 주거지역이 근접 또는 혼재하여 악취오염에 근본적으로 취약한 구조의 도시가 형성된 곳도 있다. (중략)

  • PDF

A Study on the Analysis of Volatile Flavour of Kimchee (김치 휘발성 향기성분의 분석 방법에 관한 연구)

  • Hawer, Wooderck S.
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.125-132
    • /
    • 1994
  • Flavours in kimchee are the result of unique combination of various sugars, organic acids and amino acids as well as various volatile organic compounds including sulfur-containing compounds, terpenes, alcohols, and some volatile organic acids. In the experiment for the flavour extracting methods, dynamic headspace(DHS) is more effective for collection of volatile flavour than simultaneous distillation extraction(SDE). The best polarity available at the moment is 5% phenyl methyl poly-siloxane which will separate non-polar, intermediate and polar components with good resolution.

  • PDF

Determination of sulfur containing organic drugs by means of thin layer chromatography and flask combustion method (Thinlayer chromatography및 oxygen combustion flask method에 의한 유기유황약품의 분리정량)

  • 백남호;김박광
    • YAKHAK HOEJI
    • /
    • v.13 no.2_3
    • /
    • pp.84-87
    • /
    • 1969
  • Microanalysis of organic sulfur compounds by means of combining thin layer chromatography and oxygen combustion flask method was attempted. The following procedure was found to be very simple and to give accurate results. The mixture of sulfa drugs was separated with T.L.C., and it was burned in a flask filled with oxygen, and the gas formed was absorbed in a dilute solution of sodium hydroxide. The solution was neuralized with hydrochloric acid and heated in a water bath. The sulfate ion formed was then treated with barium chromate solution and its absorbancy at 370 m.mu. was measured.

  • PDF

Autotrophic Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge: Batch Test (원소 황 입자와 활성 슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Han, Kyoung-Rim;Kang, Tae-Ho;Kang, Hyung-Chang;Kim, Kyung-Hun;Seo, Deuk-Hwa;Ahn, Yeong-Hee
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1473-1480
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Microbial removal of perchlorate is the method of choice since microorganisms can reduce perchlorate into harmless end-products. Such microorganisms require an electron donor to reduce perchlorate. Conventional perchlorate-removal techniques employ heterotrophic perchlorate-reducing bacteria that use organic compounds as electron donors to reduce perchlorate. Since continuous removal of perchlorate requires a continuous supply of organic compounds, heterotrophic perchlorate removal is an expensive process. Feasibility of autotrophic perchlorate-removal using elemental sulfur granules and activated sludge was examined in this study. Granular sulfur is relatively inexpensive and activated sludge is easily available from wastewater treatment plants. Batch tests showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of granular sulfur as an electron donor. Perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as the perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of sulfur particles were used for the autotrophic perchlorate-removal, suggesting that sulfur particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of the biofilm sample obtained from enrichment culture that used sulfur particles for $ClO_4^-$-degradation.

Towards Methionine Overproduction in Corynebacterium glutamicum - Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources

  • Bolten, Christoph J.;Schroder, Hartwig;Dickschat, Jeroen;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1196-1203
    • /
    • 2010
  • In the present work, methanethiol and dimethyldisulfide were investigated as sulfur sources for methionine synthesis in Corynebacterium glutamicum. In silico pathway analysis predicted a high methionine yield for these reduced compounds, provided that they could be utilized. Wild-type cells were able to grow on both methanethiol and dimethyldisulfide as sole sulfur sources. Isotope labeling studies with mutant strains, exhibiting targeted modification of methionine biosynthesis, gave detailed insight into the underlying pathways involved in the assimilation of methanethiol and dimethyldisulfide. Both sulfur compounds are incorporated as an entire molecule, adding the terminal S-$CH_3$ group to O-acetylhomoserine. In this reaction, methionine is directly formed. MetY (O-acetylhomoserine sulfhydrylase) was identified as the enzyme catalyzing the reaction. The deletion of metY resulted in methionine auxotrophic strains grown on methanethiol or dimethyldisulfide as sole sulfur sources. Plasmid-based overexpression of metY in the ${\Delta}$metY background restored the capacity to grow on methanethiol or dimethyldisulfide as sole sulfur sources. In vitro studies with the C. glutamicum wild type revealed a relatively low activity of MetY for methanethiol (63 mU/mg) and dimethyldisulfide (61 mU/mg). Overexpression of metY increased the in vitro activity to 1,780 mU/mg and was beneficial for methionine production, since the intracellular methionine pool was increased 2-fold in the engineered strain. This positive effect was limited by a depletion of the metY substrate O-acetylhomoserine, suggesting a need for further metabolic engineering targets towards competitive production strains.

Odor generation pattern of swine manure according to the processing form of feed

  • Won Choi;Wooje Lee;Kiyoun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.219-231
    • /
    • 2024
  • Feed has a great influence on the composition of swine manure, which is the principal cause of odor. Therefore, the purpose of this study is to simply change the shape of pig feed and control calories to find a suitable feed form for reducing the smell of swine manure. The experiment was conducted on 15 pigs from July to August 2021, and a total of three measurements were done. Three types of feed were evaluated in this study. The analysis items related to odor of swine manure are complex odor, ammonia, sulfur-based odors, and volatile organic compounds (VOCs). In the case of complex odor, dilution multiples tended to decrease over time, except for type A feed. The concentration of ammonia in all types of feed decreased over time. Most sulfur-based odorous substances except hydrogen sulfide at the first measurement were not detected. Representatively, Decane, 2,6-Dimethylnonane, and 1-Methyl-3-propylcycolhexane were detected in VOCs generated from swine manure. The major odorous substansces in swine manure have changed from ammonia and sulfur compounds to VOCs. In order to reduce the odor caused by swine manure, it is ad-vantageous to use low-calorie feed consisting of pellet-type.

Free Sugar, Free Amino Acid, Non-Volatile Organic Acid and Volatile Compounds of Dongchimi added with Jasoja(Perillae semen) (자소자 첨가 동치미의 유리당, 유리아미노산, 비휘발성 유기산 및 휘발성 향기성분)

  • 황재희;장명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • All optional ingredient, Jasoja(Perillae semen) was adopted to improve Dongchimi in qualify during fermentation. Free sugar, free amino acid, non-volatile organic acid and volatile compounds were determined during fermentation at 10$^{\circ}C$ for 45 days. Free sugar content was slightly higher in 0.5%-Jasoja-treated samples than that of control. The contents of free amino acids in control Dongchimi (without jasoja) increased slowly during fermentation while those in 0.5 %-treated samples began to decrease after reaching their maximum value on the day 11 when Dongchimi became most acceptable. There were 6 non-volatile organic acids, such as lactic, fumaric, succinic, malic, tartaric, and citric acid. Among these, only lactic and succinic acid increased consistently with fermentation while others decreased. Volatile components in Dongchimi were mostly identified as sulfur-containing compounds by gas chromatography. Their numbers and % peak areas in the gas chromatogram decreased slightly with the increase in organic acids and alcohols during fermentation period. On the other hand, Dongchimi prepared with Jasoja maintained its contents of total acids as well as the level of sulfur-containing compounds.