• Title/Summary/Keyword: Organic solvent tolerance

Search Result 17, Processing Time 0.027 seconds

Solvent Tolerant Bacteria and Their Potential Use (유기용매 내성 세균과 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1458-1469
    • /
    • 2015
  • Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negative bacteria have inherent tolerance property toward hostile organic solvents more than Gram-positive bacteria. The mechanisms of organic solvent tolerance have been elucidated extensively using mainly organic solvent-tolerant Gram-negative bacteria. The solvent-tolerance mechanisms in Gram-positive bacteria can be found in comparatively recent research. Organic solvents exhibited different toxicity depending on the solvent, and the tolerance levels of organic solvent-tolerant bacteria toward organic solvents were also highly changeable among species and strains. Therefore, organic solvent-tolerant bacteria could coped with solvent toxicity and adapted to solvent stress through the multifactorial and multigenic adaptative strategies. They could be survived even in the hyper concentrations of organic solvents by mechanisms which include: changes in cell morphology and cell behaviour, cell surface modifications, cell membrane adaptations, solvent excretion pumps, chaperones and anti-oxidative response. The aim of this work is to review the representative solvent tolerant bacteria and the adaptative and tolerance strategies toward organic solvents in organic solvent-tolerant bacteria, and their potential industrial and environmental impact.

Biodegradation of Hydrocarbons by an Organic Solvent-Tolerant Fungus, Cladosporium resinae NK-1

  • Oh, Ki-Bong;Mar, Woong-Chon;Chang, Il-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • A kerosene fungus of Cladosporium resinae NK-1 was examined for its ability to degrade individual n-alkanes and aromatic hydrocarbons by gas chromatography-mass spectrometry, and its organic solvent-tolerance was investigated by making use of the water-organic solvent suspension culture method. It grew on a wide range of solvents of varying hydrophobicities and it was found to have tolerance to various kinds of toxic organic solvents (10%, v/v) such as n-alkanes, cyclohexane, xylene, styrene, and toluene. A hydrocarbon degradation experiment indicated that NK-1 had a greater n-alkane degrading ability compared to that of the other selected strains. C. resinae NK-1, which could utilize 8-16 carbon chain-length n-alkanes of medium chain-length as a carbon source, could not assimilate the shorter chain-length n-alkanes and aromatic hydrocarbons tested so far. The n-alkane degrading enzyme activity was found in the mycelial extract of the organism.

  • PDF

Effect of Solvent Mixture Ratio on Rheology Property of Slurry and Thickness Control of Ceramic Green Sheets (유기 용매 혼합비에 따른 슬러리의 유동 특성과 세라믹 그린 쉬트의 두께 제어)

  • Kim, Jun-Young;Kim, Seung-Taek;Park, Jong-Chul;Yoo, Myong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • The effect of organic solvent mixture ratio on the rheology property of slurry and thickness control of ceramic green sheet was investigated. For selecting a suitable dispersant multiple light scattering method was used to evaluate the particle migration velocity and variation of clarification layer thickness. Using the selected dispersant the dispersion property of solution according to solvent mixture ratio was investigated. Binder and plasticizers were added to formulate slurries and their viscosity was evaluated according to solvent mixture ratio. Ceramic green sheets with average thickness of 30, 50 urn were fabricated via tape casting and their thickness tolerances measured. As a result according to solvent mixture ratio the solution and slurry properties varied and for the mixture ratio of ethanol/toluene of 80/20 the ceramic green sheet with the lowest thickness tolerance was obtained.

Screening, Characterization, and Cloning of a Solvent-Tolerant Protease from Serratia marcescens MH6

  • Wan, Mao-Hua;Wu, Bin;Ren, Wei;He, Bing-Fang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.881-888
    • /
    • 2010
  • solvent-tolerant bacterium strain, MH6, was isolated by hydrophilic organic solvent DMSO enrichment in the medium and identified as Serratia marcescens. The extracellular protease with novel organic-solvent-stable properties from strain MH6 was purified and characterized. The molecular mass of the purified protease was estimated to be 52 kDa on SDS-PAGE. The open reading frame (ORF) of the MH6 protease encoded 504 amino acids with 471 amino acid residues in the mature protease. Based on the inhibitory effects of EDTA and 1,10-phenathroline, the MH6 protease was characterized as a metalloproteinase. The enzyme activity was increased in the presence of $Ni^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. The protease could also be activated by the nonionic surfactants Tween 80 (1.0%) and Triton X-100 (1.0%). The protease showed remarkable solvent stability in the presence of 50% (v/v) solutions of long-chain alkanes and long-chain alcohols. It was also fairly stable in the presence of 25% solutions of hydrophilic organic solvents. Owing to its high stability in solvents and surfactants, the MH6 protease is an ideal candidate for applications in organic catalysis and other related fields.

Microcapsules for Stabilization of Lactic Acid Bacteria (유산균을 안정화시킨 마이크로캅셀의 제조 및 평가)

  • Jeon, Hong-Ryeol;Park, Dong-Woo;Lee, Young-Jae;Kwon, Suk-Hyung;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • A new technique has been developed for the preparation of Lactobacillus microcapsules to enhance the stability against high temperature, humidity, gastric acid and bile acid. Employing fluidized bed coating, primary sub-coating was processed in non-organic solvent system, so that Lactobacillus did not directly contact with organic solvent. Secondary enteric-coating was processed in organic solvent with low temperature $(below\;33^{\circ}C)$ technique, which minimized the heat labilability of Lactobacillus. Survival rate of Lactobacillus within microcapsule was not less than 95% and acid tolerance was above 30% in the artificial gastric acid. Further more it was dissolved in the artificial intestine juice within 2-3 hr. Average size of Lactobacillus microcapsules was $450\;{\mu}m$(25-50 mesh) and its viability was above 90% in the direct tableting.

  • PDF

Organic Solvent-Tolerant Esterase from Sphingomonas glacialis Based on Amino Acid Composition Analysis: Cloning and Characterization of EstSP2

  • Dachuri, VinayKumar;Lee, ChangWoo;Jang, Sei-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1502-1510
    • /
    • 2018
  • Organic solvent-tolerant (OST) enzymes are widely applied in various industries for their activity and stability in organic solvents, for their higher substrate solubility, and for their greater stero-selectivity. However, the criteria for identifying OST enzymes largely remain undefined. In this study, we compared the amino acid composition of 19 OST esterases with that of 19 non OST esterases. OST esterases have increased the ratio of Ala and Arg residues and decreased the ratio of Asn, Ile, Tyr, Lys, and Phe residues. Based on our amino acid composition analysis, we cloned a carboxylesterase (EstSP2) from a psychrophilic bacterium, Sphingomonas glacialis PAMC 26605, and characterized its recombinant protein. EstSP2 is a substrate specific to p-nitrophenyl acetate and hydrolyzed aspirin, with optimal activity at $40^{\circ}C$; at $4^{\circ}C$, the activity is approximately 50% of its maximum. As expected, EstSP2 showed tolerance in up to 40% concentration of polar organic solvents, including dimethyl sulfoxide, methanol, and ethanol. The results of this study suggest that selecting OST esterases based on their amino acid composition could be a novel approach to identifying OST esterases produced from bacterial genomes.

Solvent-tolerant Lipases and Their Potential Uses (유기용매 내성 리파아제와 그 이용가능성)

  • Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1381-1392
    • /
    • 2017
  • This review described solvent-tolerant lipases and their potential industrial, biotechnological and environmental impacts. Although organic solvent-tolerant lipase was first reported in organic solvent-tolerant bacterium, many organic solvent-tolerant lipases are in not only solvent-tolerant bacteria but also solvent-intolerant bacterial and fungal strains, such as the well-known Bacillus, Pseudomonas, Streptomyces and Aspergillus strains. As these lipases are not easily inactivated in organic solvents, there is no need to immobilize them in order to prevent an enzyme inactivation by solvents. Therefore, the solvent-tolerant lipases have the potential to be used in many biotechnological and biotransformation processes. With the solvent-tolerant lipases, a large number insoluble substrates become soluble, various chemical reactions that are initially impossible in water systems become practical, synthesis reactions (instead of hydrolysis) are possible, side reactions caused by water are suppressed, and the possibility of chemoselective, regioselective and enantioselective transformations in solvent and non-aqueous systems is increased. Furthermore, the recovery and reuse of enzymes is possible without immobilization, and the stabilities of the lipases improve in solvent and non-aqueous systems. Therefore, lipases with organic-solvent tolerances have attracted much attention in regards to applying them as biocatalysts to biotransformation processes using solvent and non-aqueous systems.

Cross-Resistance to Toluene and Heat in Micrococus sp. BCNU 121 (Micrococcus sp. BCNU 121균주의 toluene과 열에 대한 교차내성)

  • 주우홍;한수지;최용락;정영기
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.188-192
    • /
    • 2004
  • Toluene tolerance and therrnotolerance in Crampositive organic solvent resistant bacterium Micrococcus sp. BCNU 121 has been studied. Exposure to a sub- lethal temperature or a sub-lethal concentration of toluene conferred protection to subsequent challenges with a killing temperature or a lethal concentration of toluene, respectively. Pretreatment of Micrococcus sp. BCNU 121 with sub-lethal concentrations of toluene induced adaptative protection against heat shock. Moreover, temperature-adaptative cells also showed cross-resistance to lethal doses of toluene. These data suggested a cross-regulation between toluene tolerance and heat shock response.

Biodegradation of trichloroacetic acid from organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Lee, Seung-Han;Kim, Gi-Uk;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.390-392
    • /
    • 2003
  • Organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106 could utilize trichloroacetic acid, monochloroacetic acid, trichloroethylene, p-dichlorobenzene as a sole carbon source. But Pseudomonas savastanoi BCNU 106 didn't have tolerance about trichloroacetic acid, monochloroacetic acid, trichloroethylene, p-dichlorobenzene. Strain BCNU 106 could utilize to the extend of 30 mM trichloroacetic acid as a sole carbon source on mineral salt medium.

  • PDF

Biodegradation of BTEX (benzene, toluene, ethylbenzene, xylene isomers) from organic solvent tolerant bacterium, Pseudomonas savastanoi BCNU 106

  • Kim, Jong-Su;Park, Hyeong-Cheol;Jo, Su-Dong;Kim, Gi-Uk;Bae, Yun-Wi;Mun, Ja-Yeong;Jeong, Yeong-Gi;Ju, U-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.386-389
    • /
    • 2003
  • Organic solvent tolerance bacteria, Pseudomonas savastanoi BCNU 106 could utilize a high contentration of benzene, toluene, ethylbenzene, xylene isomers (BTEX) as a sole carbon source. It was founded that strain BCNU 106 transformed o-xylene to 2-methylbenzyl alcohol, 2-methylbenzoic acid through direct oxygenation of methyl residue on GC-MS analysis.

  • PDF