• Title/Summary/Keyword: Organic soils

Search Result 1,206, Processing Time 0.026 seconds

The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia

  • Tolessa, Terefe;Senbeta, Feyera
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • Background: Deforestation and degradation are currently affecting the ecosystem services of forests. Among the ecosystem services affected by deforestation and degradation are the amount of soil organic carbon (SOC) and total nitrogen (TN) stored in forest soils which have greater impacts in global climate change. This study aimed at examining the amount of SOC and TN in the forest fragments which were separated from the continuous tracts of forests of Jibat and Chillimo through fragmentation processes over four decades. Methods: We have sampled soils from 15 forest fragments of Chillimo and Jibat in the central highlands of Ethiopia. The soil samples obtained in two separate soil depths (0-30 and 30-60 cm) were bulked, dried, and sieved for analysis. Results: Our results have shown that the two sites (Jibat and Chillimo forest fragments) differed in their SOC and TN contents. While the values for Jibat were found to be 29.89 Mg/ha of SOC and 2.84 Mg/ha for TN, it was 14. 06 Mg/ha of SOC and 1.40 Mg/ha for TN for Chillimo. When all forest fragment soil samples were bulked together, Jibat site had twice the value of SOC and TN than Chillimo. When disaggregated on the basis of each fragments, there existed differences in SOC (1.86 Mg/ha and 42.15 Mg/ha) and TN (0.24 Mg/ha and 4.23 Mg/ha) values. Among the forest fragments, fragment four ($F_4$) had the highest Relative Soil Improvement Index (RSII) value of 3826.82% and fragment fifteen ($F_{15}$) had the lowest RSII value (726.87%) which indicated that the former had a better quality of soil properties than the latter. Conclusion: SOC and TN differed across sampled fragments and sites. Variations in soil properties are the reflections of inherent soil parent material, aboveground vegetation, human interferences, and other physical factors. Such differences could be very important for identifying intervention measures for restoration and enhancing ecosystem services of those fragments.

Determination of Pedo-Transfer Function Using the Relation Between Soil Particle Distribution, Organic Matter and Water Movement in Soil Originated from Limestone (석회암 유래 토양에서의 물의 이동특성과 토양 입자 및 유기물과의 관계에 따른 Pedo-Transfer Function의 결정)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for making PTF(Pedo-Transfer Function) for Kfs(field saturaton hydraulic conductivity) estimation, and for investigating the relation between soil particle distribution and the infiltration and percolation rate in soils originated from limestone. Soils used for the experiment were 6 soils of Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate for the soil were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. The particle size distribution and organic matter content of the soils were analyzed. Kfs was not related with sand, silt, clay, and organic mattrer (OM) content because of forest soils which contained high gravel, pebble, and cobble content, and O layer with high OM content. After Mosan soil series and O layer of Gwarim series were excluded for the data analysis, Kfs was explained as a linear function with sand and clay content and a exponential function with OM content. As a result, the PTF equation was obtained as Kfs=-4.20558+0.479706*(S)+0.023187*exp(1.829*OM) ($R^2=0.6558^{*}$).

Mineralization of soil nitrogen and some characteristics of acid hydrolizable organic nitrogen of Korean paddy soils (한국답토양(韓國畓土壤)에서 토양질소(土壤窒素)의 유효화(有効化) 및 산가수분해성유기태질소(酸加水分解性有機態窒素)에 관(關)한 특징(特徵))

  • An, Sang-Bai;Kono, Mitsiyoshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 1977
  • The mineralization of soil nitrogen, amino acid composition of acid hydrolizable organic nitrogen of four Korean soils were investigated in comparison with four Japanese (Hokuriku district) soils which is similar in nitrogen content but different in characteristics of clay minerals. The mineralization rate and pattern were quite different between Korean and Japanese soils; Korean soils were low in amount of mineralized nitrogen but porduced much ammonium nitrogen during the later stage of incubation. In Korean soils the ratio of acid hydrolizable nitrogen to total; especially ${\alpha}$-amino nitrogen and hydrolizable ammonium nitrogen were low while hexosamine content was considerablly high (greater than 10%) In all soils the amount of mineralized nitrogen showed significant positive correlation with ammonium nitrogen and ${\alpha}$-amino nitrogen in acid hydrolizate. The amino acid composition of acid hydrolizate of paddy soils showed higher in basic amino acids and lower in acidic amino acids than those of up land soils (humic volcanic ash soil) from both countries. Alanine content was low in Korean soils. Proline showed increasing trend with nitrogen content but aspartic acid decreasing.

  • PDF

A combined approach to evaluate activity and structure of soil microbial community in long-term heavy metals contaminated soils

  • Wang, Tianqi;Yuan, Zhimin;Yao, Jun
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2018
  • In the present study, long-term heavy metals (HMs) contaminated soil samples from a well-known Pb/Zn smelting area in the southwest of China were collected, and physicochemical and biological characteristics of these samples were evaluated. Soil samples contained different concentrations of HMs, namely Pb, Zn, Cu, and Cd. Enzyme activity analyses combined with microcalorimetric analysis were used for soil microbial activity evaluation. Results showed that two soil samples, containing almost the highest concentrations of HMs, also shared the greatest microbial activities. Based on correlation coefficient analysis, high microbial activity in heavily HMs contaminated soil might be due to the high contents of soil organic matter and available phosphorus in these samples. High-throughput sequencing technique was used for microbial community structure analysis. High abundance of genera Sphingomonas and Thiobacillus were also observed in these two heavily contaminated soils, suggesting that bacteria belonging to these two genera might be further isolated from these contaminated soils and applied for future studies of HMs remediation. Results of present study would contribute to the evaluation of microbial communities and isolation of microbial resources to remediate HMs pollution.

Heavy Metal Speciation in Soils from the janghang Smelter Area (장항 제련소 지역 토양의 중금속 오염에 대한 환경광물학적 연구)

  • 여상진;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 1997
  • The Janghang smelter is the first lead, zinc and copper smelting facility in Korea which was operated for a half century from 1936 to 1989. The clay minerals and their heavy metal association in the soil profile around the smelter have been studied using XRD, EPMA, SEM-EDS, TEM, EPR and sequential extraction techniques. The soils in A horizon are highly acidic showing pH 4.45. The pH is going up with increasing depth. They have residual water contents of 1.18-1.51 wt%, loss on ignition of 6.32-7.79 wt%, and carbon contents of 0.08-0.88 wt%. Soils consist of quartz, feldspar, muscovite, kaolinite, vermiculite, biotite, chlorite, goethite and hematite in the decreasing abundance. The contents of clay minerals, especially vermiculite and chlorite, decrease with increasing depth. Sequential extraction experiments for the profile samples show that heavy metals (Zn, Cu, Pb, Cd) are highly concentrated in the A horizon of the soil profile as water-extractable (mostly amorphous), MgCl2-extractable (exchangeable in clay minerals), and organic phases. The heavy metal contents decrease with increasing depth. It suggests that the heavy metals are mainly associate with clay minerlas in an exchangeable state. It is also noted that heavy metals are highly concentrated in the manganese and iron oxide phases.

  • PDF

Microbial Activity of Ammonia Oxidizing Bacteria and Ammonia Oxidizing Archaea in the Rice Paddy Soil in Wang-gung Area of Iksan, Korea (익산 왕궁지역 논 토양에서의 질산화 세균과 질산화 고세균의 미생물학적 작용)

  • Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.50-59
    • /
    • 2016
  • Spatial and temporal changes in nitrification activities and distribution of microbial population of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in paddy soils were investigated. Soil samples were collected in March and October 2015 from rice paddy with and without the presence of confined animal feeding operations. Incubation experiments and quantitative polymerase chain reaction showed that AOA's contribution to nitrification kinetics was much higher in locations where organic nitrogen in animal waste is expected to significantly contribute to overall nitrogen budget, and temporal variations in nitrification kinetics were much smaller for AOA than AOB. These differences were interpreted to indicate that different microbial responses of two microbial populations to the types and concentrations of nitrogen substrates were the main determining factors of nitrification processes in the paddy soils. The copy numbers of ammonium monooxygenase gene showed that AOA colonized the paddy soils in higher numbers than AOB with stable distribution while AOB showed variation especially in March. Although small in numbers, AOB population turned out to exert more influence on nitrification potential than AOA, which was attributed to higher fluctuation in AOB cell numbers and nitrification reaction rate per cells.

Spectral Reflectance of Soils Related to the Interaction of Soil Moisture and Soil Color Using Remote Sensing Technology (RS 기법을 이용한 토양수분과 토양 색에 관련된 토양의 분광반사)

  • 박종화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.77-84
    • /
    • 2003
  • Recent advances in remote sensing techniques provide the potential for monitoring soil color as well as soil moisture conditions at the spatial and temporal scales required for detailed local modeling efforts. Soil moisture as well as soil color is a key feature used in the identification and classification of soils. Soil spectral reflectance has a direct relationship with soil color, as well as to other parameters such as soil moisture, soil texture. and organic matter. We evaluate the influence of seven soil properties, soil color and soil moisture, on soil spectral reflectance. This paper presents the results obtained from the ground-truth spectral reflectance measurements in the 300-1100 nm wavelength range for various land surfaces. The results suggest that the reflectance properties of soils are related to soil color, soil texture, and soil moisture. Increasing soil moisture content generally decreases soil reflectance which leads to parallel curves of soil reflectance spectra across the entire shortwave spectrum. We discuss the relationships between the soil reflectance and the Munsell Soil Color Charts which contain standard color chips with colors specified by designations for hue, value, and chroma.

Studies on the Genesis of Ginseng Rust Spots

  • Wang, Yingping;Li, Zhihong;Sun, Yanjun;Guo, Shiwei;Tian, Shuzhen;Liu, Zhaorong
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • In order to explain the connection between ginseng rust spot and soil ecological conditions, the bed soils and ginseng roots were sampled at different microrelief units and the reducing substances of the bed soils and iron forms of the ginseng root epi dermises were determined. The results showed that the occurrence of the rust spot was connected with the ecological conditions of the soils and the metabolism of the plant which was caused by the excessive $Fe^{2+}$ in the soil solution. Ginseng rust spot was the enrichment of iron which was mainly composed of organic complex irons. Including active ferrous active ferric and non active ferric forms and they were transformed into each other following the change of soil moisture and temperature regimes. According to the regularity of growth and decline of reducing substances in soil and rust index of ginseng roots as well as the difference of adaptability to excessive $Fe^{2+}$ in soil among different year-old seeding, a new comprehensive measure based on the connection of ameliorating soil and improving cultivation system was recommended to prevent the occurrence of ginseng rust spot.

  • PDF

Regional and Environmental Status of Upper Basin of Daechung Reservoir to Predict Nitrogen and Phosphorus Loads from Aerable Land and Forest Stand

  • Kim, Hye-Jin;Lim, You-Jin;Song, Jin-A;Park, Misuk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Approximately 67% of the total land area of the Korea is covered by forest. Eutrophication, defined as the enrichment of waters beyond natural levels, principally by the nutrient phosphorus (P), is a serious cause of concern at the present time. The contribution of forestry to P loading in catchment waters has not been intensively studied in Korea, but is potentially important because forests are often located in near-pristine environments. Phosphorus is retained by most mineral soils and, as a consequence, losses are usually negligible. However, it is much more mobile in organic soils where it can be relatively easily leached or lost through surface runoff, as these soils have a low capacity to retain free phosphate. This report has been prepared to study the influence of arable land used for paddy, upland, and forestry on water quality in the basin of Daechung reservoir.

Characterization and Distribution of Clay Minerals in Corn Field Soils in Korea

  • Jang, Jeonghun;Park, Nayun;Lee, Donghoon;Choi, Seyeong;Park, Junhong;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.813-818
    • /
    • 2016
  • Distribution of clay minerals separated from clay fraction of corn fields in Korea has been investigated along with their characterization. Crystalline phases of the clay minerals were identified by powder X-ray diffraction (XRD) pattern, and their relative chemical compositions were analyzed by X-ray fluorescence spectrometry (XRF). The soils were found to have pH 6.4, organic matter $37.2g\;kg^{-1}$, available $P_2O_5$ $599mg\;kg^{-1}$, respectively, and exchangeable K, Ca and Mg were 1.2, 7.3 and $1.8cmol_c\;kg^{-1}$, respectively. Major primary minerals consisted mainly of quartz and mica, and kaolinite and chlorite were identified as major secondary clay minerals. For most of soils, mica phase was identified to be muscovite rather than biotite. The average contents of $SiO_2$, $Al_2O_3$ and $Fe_2O_3$ were 43.7, 23.6 and 8.8%, respectively, although they were different with the locations.