• Title/Summary/Keyword: Organic seed production

Search Result 72, Processing Time 0.031 seconds

Production and utilization of organic compost from spent mushroom (Pleurotus eryngii) substrate (큰느타리버섯 수확 후 배지를 이용한 유기퇴비 제조 및 활용)

  • Lee, Sang-Hwa;Park, Ju-Ri;Oh, So-Ra;Ryu, Song-Yi;Ryu, Young-Hyun;Kang, Min-Gu;Lee, Suk-Hee;Jo, Woo-Sik
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • We investigated the possibility of utilizing spent mushroom culture-medium as raw material to produce organic compost. Mushroom culture-medium contained 2.69% nitrogen, 41.07% carbon, and 0.99% phosphoric acid. Nitrogen and carbon content in rice bran were 3.08% and 47.34%, respectively. Nitrogen, carbon, and phosphoric acid content in mushroom Pleurotus eryngii were 3.41%, 34.63%, and 1.70%, respectively. Our study aimed to evaluate the degree of decay of compost produced from the substrate, used to culture King Oyster mushrooms by analyzing seed germination indexes in cucumber, radish, lettuce, and Chinese cabbage. Our results showed that compost from spent mushroom culture-medium completed the stabilization process in 4 to 6 weeks, as evaluated by the appropriate organic compost maturity point for the plantation.

Properties of Pepper growth and Yield, Cost Down with No-Tillage Organic Cultivation in Vinyl Greenhouse (시설고추 무경운 유기 재배의 생육 및 수량 특성과 생산비 절감효과)

  • Yang, Seung-Koo;Seo, Youn-Won;Son, Jang-Hwan;Park, Jong-Dae;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.411-422
    • /
    • 2012
  • To investigate the possibility of sustainable agriculture in no-tillage pepper this study was carried out in vinyl greenhouse with organic cultivation having no pesticide certification. 1. Growth and yield in pepper cultivation General growth in pepper was suppressed with decreasing hill spacing, primary branch length, and stem width. Fruit diameter and fruit weight in no-tillage increased significantly, and yield of pepper increased by 10% compared with conventional tillage. From results organic cultivation in no-tillage improved a quality of pepper compared with conventional tillage. 2. Production cost of conventional tillage and no-tillage Production cost of conventional tillage and no-tillage was not different in seed cost, inorganic fertilizer cost, pesticide cost, repair cost, light agricultural tool cost, agriculture facilities depreciation cost and so on. Intermediary goods cost in no-tillage was decreased by 11% for organic fertilizer cost, light and heat expenses and power rate, heavy agricultural tool cost, and repairing expenses compare with conventional tillage. Employment effort cost and work effort cost were decreased, and farm income and farm income rate were increased by 11% and 5%, respectively, in no-tillage. In this work, yield and gross income were increased by 10% and 25%, respectively, in no-tillage. Therefore material cost, intermediary goods cost, working expensive, farm income, and income rate were increased by 34%, 3%, 2%, 52% and 22%, respectively.

Can Moringa oleifera Be Used as a Protein Supplement for Ruminants?

  • Kakengi, A.M.V.;Shem, M.N.;Sarwatt, S.V.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • The possibility of using Moringa oleifera as a ruminant protein supplement was investigated by comparison between nutritive and anti-nutritive value of its different morphological parts with that of conventionally used Leucaena leucocephala leaf meal (LL). Parameters determined were chemical composition, rumen degradable protein (RDP), acid detergent insoluble protein (ADIP), pepsin soluble protein (PESP), non-protein nitrogen (NPN) total soluble protein (TSP) and protein potentially digested in the intestine (PDI). Total phenols (TP) and total extractable tannins (TET) were also evaluated as anti-nutritive factors. In vitro gas production characteristics were measured and organic matter digestibility (OMD) was estimated basing on 24 h-gas production. Crude protein content ranged from 265-308 g/kg DM in M. oleifera leaves (MOL) and seed cake (MOC) respectively. Leucaena leucocephala and Moringa oleifera soft twigs and leaves (MOLSTL) had CP content of 236 and 195 g/kg DM while Moringa oleifera soft twigs alone (MOST) and Moringa oleifera bucks (MOB) had 160, 114 and 69.3 g/kg DM respectively. RDP was highest in (MOC) (181 g/kg DM) followed by (MOL) (177 g/kg DM) and was lowest in MOB (40 g/kg DM). The proportion of the protein that was not available to the animal (ADIP) was (p<0.05) higher in MOL and MOC (72 and 73 g/kg DM) respectively and lowest in LL (29 g/kg DM). The PDI was high in LL (74 g/kg DM) followed by MOC (55 g/kg DM) then MOL (16 g/kg DM). PESP was highest (p<0.05) in MOC followed by MOL then LL (273, 200 and 163 g/kg DM respectively). MOC exhibited highest NPN content (116 g/kg DM) and was lowest in MOB (18 g/kg DM) (p<0.05). Highly (p<0.05) TSP was observed in MOC and MOL (308 and 265 g/kg DM respectively) followed by LL (236 g/kg DM). MOL had negligible TET (20 g/kg DM) when compared with about 70 g/kg DM in LL. Highly (p<0.05) b and a+b values were observed for MOLSTL (602 and 691 g/kg DM respectively) followed by MOL (490 and 538 g/kg DM). Highest c value was observed in MOSTL followed by MOC and MOL (0.064, 0.056 and 0.053 rate/hour) respectively. OMD was highest (p<0.05) for MOSTL followed by MOC and then MOL (579, 579 and 562 g/kg DM respectively). LL exhibited lower (p<0.05) OMD (467 g/kg DM). It was concluded from this study that the high crude protein content in MOL and MOLST could be well utilized by ruminant animals and increase animal performance however, high proportion of unavailable protein to the lower gut of animals and high rumen degradable protein due to negligible tannin content render it a relatively poor protein supplement for ruminants. MOC can be a best alternative protein supplement to leaves and leaves and soft twigs for ruminants.

Studies on the Citric Acid Production by Hansenula anomala var. anomala (Hansenula anomala var. anomala에 의(依)한 구연산 생산(生産)에 관(關)한 연구(硏究))

  • Oh, Man-Jin;Park, Yoon-Joong;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1973
  • A potent citric acid producing strain was selected by an extensive screening test of the yeasts isolated from the various sources. These experiments were conducted to identify the selected strain and investigate the cultural conditions for citric acid production. The results obtained were as fellows: 1. The selected strain of yeast was identified to Hansenula anomala var. anomala by a taxnoomic study of Lodder. 2. The optimum conditions for citric acid production in the basal medium containing 10% glucose were: temperature $30^{\circ}C$, the concentration of $CaCO_3$ 3% and the velocity of oscillation 110 oscills/min. 3. As a nitrogen source ol the basal medium $NH_4Cl(0.1%)$ was the most effective for citric acid production. Organic nitrogen sources such as peptone were adequate for growth of the strain but not for citric acid production. 4. The most effective concentration of glucose was 10% in yield ratio of citric acid from sugar. 5. The addition of defatted rape seed, defatted perilla or defatted rice bran to the medium was effective for citric acid production. When 5% extract solution of defatted rape seed was added, the citric acid production was increased as much as 40% as compared with the case of adding yeast extract(0.2%). 6. The most effective concentration of $KH_2PO_4$ and $MgSO_4{\cdot}7H_2O$ in the medium(for citric acid Production) was 0.05% and 0.025% respectively. 7. Under the optimum cultural conditions, the growth of the strain was continued up to 5 days and the increase of citric acid production was continued up to 6 days, showing the yield ratio of 46% to glucose.

  • PDF

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Two-Stage Biological Hydrogen Production by Rhodopseudomonas palustris P4 (Rhodopseudomonas palustris P4에 의한 이 단계(Two-stage) 생물학적 수소생산)

  • Yun, Young-Su;In, Sun-Kyoung;Baek, Jin-Sook;Park, Sung-Hoon;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.315-323
    • /
    • 2005
  • The integrated or the two-stage (dark anaerobic and photosynthetic) fermentation processes were compared for the hydrogen production using purple non-sulfur photosynthetic bacteria, Rhodopseudomonas palustris P4. Cell growth, pH changes and organic acids and bacteriochlorophyll contents were monitored during the processes. Culture broth of Rps. palustris P4 exhibited dark-red during the photosynthetic culture condition, while yellow under the anaerobic condition without light. Rps. palustris P4 grown at the photosynthetic condition evolved 0.38 and 1.33 ml $H_2$/mg-dcw during the dark and the light fermentation, respectively, which were totally 1.71 ml $H_2$/mg-dcw at the two-stage fermentation. The rate of hydrogen production using Rps. palustris P4 grown under the dark anaerobic condition was 2.76 ml $H_2$/mg-dcw which consisted of 0.46 and 2.30 ml $H_2$/mg-dcw from the dark and the photosynthetic fermentation processes, respectively. Rps. palustris P4 grown under dark anaerobic conditions produced $H_2$ 1.6 times higher than that of grown under the photosynthetic condition. However, total fermentation period of the former was 1.5 times slower than that of the latter, because the induced time of hydrogen production during the photosynthetic fermentation was 96 and 24 hours when the seed culture was the dark anaerobic and photosynthetic, respectively. The integrated fermentation process by Rps. palustris P4 produced 0.52 ml $H_2$/mg-dcw(1.01 mol $H_2$/mol glucose), which was 20% of the two-stage fermentation.

Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract (발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro)

  • Marbun, Tabita Dameria;Song, Jaeyong;Lee, Kihwan;Kim, Su Yeon;Kang, Juhui;Lee, Sang Moo;Choi, Young Min;Cho, Sangbuem;Bae, Guiseck;Chang, Moon Baek;Kim, Eun Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.735-746
    • /
    • 2016
  • This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

Studies on the Conditions of Extracellular Phytase Production, by Aspergillus niger (Aspergillus niger에 의한 균본외 Phytase 생산조건에 관한 연구)

  • 김경환;양호석;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.2
    • /
    • pp.133-144
    • /
    • 1982
  • The distribution of acid phosphatase activity was investigated with 141 microorganisms from the type culture collection of Chong Kun Dang laboratory and the 41 strains isolated from natural sources. The phytase activity was detected mainly with fungal strains. A fungus isolated from soil and identified as Aspergillus niger had shown the highest phytase activity. The environmental conditions for the enzyme formation by the isolate and some properties of the enzyme were also studied. The results obtained were as follows: (1) The highest phytase production was observed when the fungus was cultivated at 28$^{\circ}C$ for 5 days in the corn starch based medium using the cells incubated at 34$^{\circ}C$ for 3 days as a seed. (2) The optimal initial pH of the culture medium was found to around 2 for the formation of phytase. (3) Sucrose was proved to be one of the most effective carbon sources tested for the enzyme production. (4) As an inorganic nitrogen source, potassium nitrate was found to give a good result in the production of phytase. (5) Synthesis of phytase was significantly increased by the supplement with 0.2 % corn steep liquor to the basal medium as an organic nitrogen source. (6) At the concentration of 40-80 mg inorganic phosphate per liter of the culture medium, the enzyme formation revealed the highest level. But as the phosphate was increased above this optimum concentration the phytase activity was drastically decreased although the cell density showed to be still increasing

  • PDF

Several Factors on Growth of Radish and Absorption and Translocation of Chromium (크롬이 무의 생육과 흡수이행에 미치는 몇가지 요인)

  • Han, Kang-Wan;Cho, Jae-Young;You, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.370-376
    • /
    • 1997
  • Experiments were conducted to investigate the effects of chromium application level, soil pH change, soil topping, application of some metals and application of organic matter on the absorption of chromium by radish and its growth. The results of experiments are summarized as following. Application of chromium as potassium dichromate up to 50 mg/kg did not affect the germination of radish seed. Application of chromium above this level affected the germination abversely. The dry matter yield of and absorption of chromium by radish was not affected by the application of chromium up to 100 mg/kg. Increased in soil pH decreased the uptake of chromium by radish under all range of chromium application rates. Under acidic condition (pH 5-6), the increase in the application of chromium resulted in the increase in the uptake of chromium by radish and lowering of dry matter production of radish. However, under alkaline condition (pH 7-8), increased application of chromium did not affect the uptake of chromium and the dry matter yield of radish. The application of Zn, Fe and Cu, up to 100 mg/kg did not affect not affect the uptake of chromium and dry matter yield of radish. The topping of soil with untreated soil after application of chromium up to five cm, did not affect the chromium uptake of radish, the same treatments tended to increase the dry matter yield of radish. The application of organic fertilizer(obtained from local market) up to the amount equivalent to 3000 kg/ha, although increased the dry matter yield of radish, did not affect the uptake of chromium by radish significantly. All the treatments tested in this study did not affect the translocation of chromium between root and shoot of radish.

  • PDF