• Title/Summary/Keyword: Organic resources

Search Result 2,327, Processing Time 0.036 seconds

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Effect of Organic Fertilizer, Microorganism and Swaweed extract Application on Growth of Chinese Cabbage (유기질비료와 토양미생물제제 및 해초추출물 시용이 배추수량에 미치는 영향)

  • Cho, Sung-Hyun;Park, Tae-Hurn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.81-85
    • /
    • 2002
  • This study was carried out to investigate the effect of organic fertilizer(OM-1 : $300kgha^{-1}$, OM-2 : $600kgha^{-1}$), microorganism(ML : liquid form, MP : powder form) and seaweed extract ; ascophyllum nodosum(AF : foliar application, AI ; irrigation) on the growth and yield of the chinese cabbage. At the treatment of organic fertilizer OM-2 have appeared the best yield. According to the application of microorganism appeared certainly increasing yield of cabbage by application of powder form. The excess application of organic fertilizer OM-2 should not be occurred fertilizer damages and increased on the growth and yield by use of microorganism, In application of sewweed extract treatment, the cabbage yield increased by irrigation method.

  • PDF

Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields

  • Wu, Kai;Fang, Zhiying;Wang, Lili;Yuan, Saifei;Guo, Rong;Shen, Biao;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1755-1764
    • /
    • 2016
  • The application of Bacillus sp. in the biological control of plant soilborne diseases has been shown to be an environmentally friendly alternative to the use of chemical fungicides. In this study, the effects of bioorganic fertilizer (BOF) fortified with Bacillus amyloliquefaciens SQY 162 on the suppression of tomato bacterial wilt were investigated in pot experiments. The disease incidence of tomato wilt after the application of BOF was 65.18% and 41.62% lower at 10 and 20 days after transplantation, respectively, than in the control condition. BOF also promoted the plant growth. The SQY 162 populations efficiently colonized the tomato rhizosphere, which directly suppressed the number of Ralstonia solanacearum in the tomato rhizosphere soil. In the presence of BOF, the activities of defense-related enzymes in tomato were lower than in the presence of the control treatment, but the expression levels of the defense-related genes of the plants in the salicylic acid and jasmonic acid pathways were enhanced. It was also found that strain SQY 162 could secrete antibiotic surfactin, but not volatile organic compounds, to suppress Ralstonia. The strain could also produce plant growth promotion compounds such as siderophores and indole-3-acetic acid. Thus, owing to its innate multiple-functional traits and its broad biocontrol activities, we found that this antagonistic strain isolated from the tobacco rhizosphere could establish itself successfully in the tomato rhizosphere to control soilborne diseases.

Evaluation of Beneficial Function for Organic Paddy Farming in Korea

  • Seo, M.C.;Park, K.L.;Ko, B.G.;Kang, K.K.;Ko, J.Y.;Lee, J.S.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.108-110
    • /
    • 2011
  • In order to evaluation of beneficial functions for organic farming, we have divided beneficial functions as 9 sub-functions such as flooding control, fostering water resources, purifying the air, mitigating summer climate, purifying water quality, decreasing soil erosion, accumulating soil carbon, conserving biodiversity, and preventing accidents from pesticides. And they were quantified by searching related repots and statistics, and surveying fields. Organic farming, especially organic paddy farming, showed that some functions like fostering water resources, accumulating soil carbon, conserving biodiversity, and preventing accidents from pesticides were higher than conventional paddy farming, while the others were almost similar. The fostering water resources function was evaluated as 4,297 ton $ha^{-1}\;year^{-1}$ to increase about 3.6% comparing with that of conventional farming. New function for accumulating soil carbon at organic paddy fields has been assessed by 4.67 ton $ha^{-1}$ in terms of long periods over 10 years. Considering area of organic paddy farming in Korea and value of carbon price, it was evaluated monetary value as 22.4 to 84.1 billion won using replaced method. It could be also evaluated that flooding control, fostering water resources, purifying the air, mitigating summer climate, purifying water quality, decreasing soil erosion, and preventing accidents from pesticides were 2,980, 123.4, 482.6, 87.5, 0.9, 55.6, and 284.1 billion won, respectively. Conserving biodiversity function would be very big at organic farming though it couldn't be evaluated as monetary value.

The Mobile Composting Device Development of Organic Wastes (유기성 폐기물의 이동용 퇴비화 장치개발에 관한 연구)

  • Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.56-62
    • /
    • 2013
  • Organic wastes are not disposing object but renewable resources. One of those ways of rendering to resources, composting is environmentally friendly way as to aspect of recycling of resources. Regardless of ways, composting goes through the main processes which are fermentation process and curing process. In the study, mobile composting device was developed with the experiments which were performed to solve the problems of fermentation and curing process. Since reaction vessel is rotated, it does not cease in the middle of agitation because of foreign. In addition, it mixed as well. With maintaining uniform temperature of reaction vessel by controlling amount of air, fermentation and curing are easy to use. Its economic feasibility is better than the existing fermentation equipments. Furthermore, it benefits to reduce the personnel and materiel maintenance cost, and mass produce composting product which use organic waste. Especially, although it needs less space, it has effect to provide transferable composting device with available area to increase by contacting organic waste to air.

A Study on Area Types of Recycling Agriculture (지역별 순환농업의 유형에 관한 연구)

  • 조익환
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.3
    • /
    • pp.91-108
    • /
    • 2003
  • So far, we have pursued only convenient and efficient growth of economy, as a result, environment surrounding us has been destroyed and the rights of our existence gotten to be even threatened. We need to ensure our lives and at the same time, need a power with which agriculture undertakes global circulation structure and a power that is able to preserve our environment we live per so. Therefore, in the near future, the final objectives of agriculture structure for 21st century would be to increase productivity of highly developed agricultural products in accordance with the ecosystem and a recycling agriculture. What is a recycling agriculture\ulcorner In the narrow sense, it means provisions-producing- system related to interactive recycle of material among forestry, livestock husbandry and seeding agriculture. In the broad sense, it means to produce credible agricultural product by keeping balanced resources via conversion to complete degradable material of organic wastes produce within rural village. Based on this concept, finally, our goal is to construct the resources recycling community. Environment friendly agriculture ⇒ organic agriculture ⇒ recycling (circulation) agriculture ⇒ construction of community with resources recycling. Therefore, in order to construct recycling agriculture, most of all, it is considered that the following, it should be established reasonable standard amounts for fertilizer, manure and liquid fertilizer based on results of soil test by each region, nature-recycling form of crops production and livestock production systems by maximizing utilization of different recycling byproducts occurring in the crop producing process by each region.

  • PDF