• Title/Summary/Keyword: Organic polymer

Search Result 1,532, Processing Time 0.023 seconds

Development of Naturally Degradable "Rice Polymer" For Organic Weed Management of Red Pepper and Rice

  • Kang, C.K.;Nam, H.S.;Lee, Y.K.;Lee, S.B.;Lee, B.M.;Oh, Y.J.;Jee, H.J.;Hong, M.K.;Jung, K.W.;Lee, Y.J.;Choi, Y.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.119-122
    • /
    • 2011
  • Among the developed bio-degradable polymer films as compared with transparent film(White), black polymer film was significantly more effective for controlling weeds in red pepper. Also, we found that white and black polymer mulching had 81.8% and 97.9% of managing weed controlling effects in rice, respectively. Compared to non-mulched rice paddy with water supply, the non-mulched rice paddy without any water supply has stopped its growth at 41 days after transplanting, while polymer-mulched rice paddy without water supply had about 60% of normally growing rice plants. This shows the polymer treatment has a remarkable effect on water and power saving, solution of herbicidal resistance, avoidance of herbicidal influence to eco-system etc. When the naturally decomposing polymer was used, a temperature was elevated as high as $4.7^{\circ}C$ on maximum and $2.6^{\circ}C$ on average. Also the naturally decomposing polymer accelerated rooting by 7 days and lowered a stress level from transplanting. The weed control effect mulched by polymer was remarkable as 98.7%. The polymer now, after 294 days treated on the rice paddy, has been completely decomposed.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Evaluating the Influence of Liquid Organic Polymer on Soil Aggregation and Growth of Perennial Ryegrass (유기중합물이 토양의 입단화와 페레니얼 라이그래스의 성장에 미치는 영향)

  • Lee, Sang-Kook;Minner, David
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Soil aggregate is a vigorous procedure including soil physical, chemical, and biological processes. Pore space created by binding these particles together improves retention and exchange of air and water. Various researches have reported that the benefits of organic polymers that may increase aggregate stability. The purpose of the study was to determine if a liquid organic polymer mixture has any influence on perennial ryegrass quality or soil aggregation. $Turf2Max^{(R)}$ was applied to two soils as a source of liquid organic polymer. Fine-loamy soil from local Iowa topsoil with 4.0% organic matter was screened and dried. Commercial baseball infield clay, $QuickDry^{(R)}$, was used as the second soil There were three rates of liquid organic polymer (0, 2, and 4%). there was no visual improvement in turf grass color, quality, or growth by using organic polymer. It is possible that aggregate stability increases with use of organic polymer. The aggregate stability study needs to be repeated in the greenhouse and then substantiated under field conditions for these preliminary observations.

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

Radical Polymers and Organic Radical Battery

  • Nishide, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.62-62
    • /
    • 2006
  • Based on the redox couples of a nitroxide radical, organic radical polymers were utilized as the electrode-active or charge-storage component for a secondary battery. We call a battery composed of the radical polymer electrode as "organic radical battery". Organic radical battery has several advantages: high capacity, high power-rate performance, long cycle ability, and environmentally-benign features. Synthesis and electrochemical studies of nitroxide polymers are described. Battery fabrication and cell performance are also reported.

  • PDF