• Title/Summary/Keyword: Organic photovoltaic cells

Search Result 132, Processing Time 0.034 seconds

Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group

  • Wang, Yuan;Yu, Qu Feng;Park, Hea-Jung;Ryu, Suk-Hwa;Choi, Jung-Hei;Yoon, Ung-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3081-3089
    • /
    • 2011
  • A series of new bis-thienylanthracene derivatives D1~D5 containing 9,10-antharcene moiety in the center and 2-methylenemalonotitrile or 2-cyanoacrylic acid functional group on the terminal thiophenes were synthesized and characterized by $^1H$-NMR and high-resolution mass spectroscopy. Their optical, electrochemical, and thermal properties were measured. They have absorption ${\lambda}_{max}$ in the range of 437~480 nm and max of $7.4{\times}10^3{\sim}2.0{\times}10^4M^{-1}cm^{-1}$. The substitution of 2-cyanoacrylic acid group allows greater value of ${\varepsilon}_{max}$ than that of 2-methylenemalonotitrile. TGA curves showed that D4 and D5 which have 2-cyanoacrylic acid functional group on the terminal thiophene(s) exhibit good thermal stability and D4 was thermally stable up to $400^{\circ}C$. Their optical properties and LUMO energy levels measured suggest that they can serve as potential candidates for electron donor materials of organic photovoltaic cells (OPVs) or D4 and D5 which contain 2-cyanoacrylic acid group can be used as organic dyes of dye-sensitized solar cells (DSSCs).

Relationship between the porosity of the nanostructured $TiO_2$ electrode and Dye Loading for Dye-sensitized Solar Cells (염료감응태양전지를 위한 $TiO_2$ 분말 기공도와 염료 흡착량의 관계)

  • Hwang, Seongjin;Jung, Hyunsang;Jeon, Jaeseung;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.68.2-68.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSC) show great promise as an inexpensive alternative to conventional p-n junction solar cells. Investigations into the various factors influencing the photovoltaic efficiency have recently been intensified. The conventional absorber electrode in DSSC is composed of compacted or sintered $TiO_2$ nanopowder that carries an anchored organic dye. The absorbance of incident light in the DSC is realized by specifically engineered dye molecules placed on the semiconductor electrode surface ($TiO_2$). The dye absorbs light at wavelengths up to about 920nm, the energy of the exited state of the molecule should be about 1.35eV above the electronic ground state corresponding to the ideal band gap of a single band gap solar cell. The dye molecules ar adhered onto the nanostrutured $TiO_2$ electrode by immersing the sintered electrode into a dye solution, typically 3mM in alcohol, for a long enough period to fully impregnate the electrode. However, the concentrations of the dye is slightly changed due to the evaporation of the alcohol. The dye is more expensive than other materials in DSSC and related to the efficiency of DSSC. Therefore, the concentrations of the dye should be carefully measured. In this study, we investigated to the dye loading on fired $TiO_2$ powder as a function of temperature by the TG-DTA and the dye solution by UV-visible spectroscopy after the impregnation process. The dye loading is related to the porosity of the nanostructured $TiO_2$ electrode.

  • PDF

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

Synthesis and Photovoltaic Properties of Polymers Based on Cyclopentadithiophene and Benzimidazole Units

  • Song, Su-Hee;Park, Sei-Jung;Kwon, Soon-Cheol;Shim, Joo-Young;Jin, Young-Eup;Park, Sung-Heum;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1861-1866
    • /
    • 2012
  • The new semiconducting copolymers with 4,4-dialkyl-$4H$-cyclopenta[2,1-$b$:3,4-$b^{\prime}$]dithiophene and 2,2-dimethyl-$2H$-benzimidazole units were synthesized. The fused aromatic rings, such as cyclopentadithiophene (CPDT) unit, can make the polymer backbone more rigid and coplanar, which induces long conjugation length, narrow band gap, and strong intermolecular ${\pi}-{\pi}$ interaction. The stacking ability was controlled through attaching of linear or branched alkyl side chains. The spectra of PEHCPDTMBI and PHCPDTMBI in the solid films show absorption bands with maximum peaks at 401, 759 and 407, 768 nm, and the absorption onsets at 925 and 954 nm, corresponding to band gaps of 1.34 and 1.30 eV, respectively. The devices comprising PHCPDTMBI with $TiO_X$ showed a $V_{OC}$ of 0.39 V, a $J_{SC}$ of 1.14 $mA/cm^2$, and a $FF$ of 0.34, giving a power conversion efficiency of 0.15%. The PHCPDTMBI with linear alkyl chain on CPDT shows good solubility in organic solvent with higher PCE value than that of PEHCPDTMBI.

Non-Conjugated Polymer Electrolytes for Polymer Solar Cells (고분자 태양전지를 위한 비공액형 고분자 전해질)

  • Nasrun, Rahmatia Fitri Binti;Salma, Sabrina Aufar;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.467-474
    • /
    • 2020
  • Polymer solar cells have attracted extensive attention over the past decade due to their benefits, such as good solution-process-ability, light weight, low-cost, mechanically flexibility, and high efficiency. Conjugated (CPE) and non-conjugated (NPE) polyelectrolyte materials have been employed to avoid the typical weaknesses associated with conventional metal oxide interlayers. However, the application of CPEs is more complicated than that of NPEs because the synthesis procedures are complicated. NPEs containing charged ion groups can provide numerous benefits for renewable energy applications. Especially when implemented in polymer solar cells.

Recent Progress in Surface/Interface Defect Engineering of Perovskite for Improving Stability (페로브스카이트의 표면 및 계면 결함 제어를 통한 안정성 향상 기술 경향)

  • Kim, Min
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2020
  • Organic-inorganic metal halide perovskite has shown a great promise in photovoltaic applications because of the skyrocketing power-conversion efficiencies up to 25.2% and their potentially low production cost. However, it also has critical issue of substantial material degradation during device operation to be overcome for successful commercialization. Understanding the nature of defects and their photochemistry related to material degradation is needed. Furthermore, strategy to passivate defects in perovskite should be adopted to improve the stability of perovskite. In this article, we present predominant defects formation in perovskite that contribute to material degradations in perovskite solar cells. We then discuss how material stability can be improved through reliable defect passivation engineering.

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF

Synthesis and Photovoltaic Properties of a Low Band Gap Polymer for Organic Solar Cell (유기태양전지를 위한 작은 밴드갭 고분자의 합성과 광전특성)

  • Woo, Yong-Ho;Lee, Hyo-Sang;Park, Sungnam;Choi, E-Joon;Kim, BongSoo
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • We synthesized a low band gap alternating copolymer containing electron-rich units (i.e. dithienosiloles and benzodithiophenes) and electron-deficient units (i.e. difluorobenzothiadiazoles) for high performance organic solar cells. The polymer was prepared by the Stille coupling reaction and characterized using $^1H$ NMR, GPC, TGA, UV-visible absorption spectroscopy, and cyclic voltammetry. Solar cells were fabricated in a structure of ITO/PEDOT:PSS/polymer: $PC_{70}BM/Al$ with five different blending ratios of polymer and $PC_{70}BM$ (1:1.5, 1:2, 1:3, 1:3.5 and 1:4 by weight ratio). The best efficiency was achieved from the 1:3 ratio of polymer and $PC_{70}BM$ in the photoactive layer, and TEM revealed that there is an optimal nanoscale phase separation between polymer and $PC_{70}BM$ in the 1:3 ratio blend film.

Synthesis and Photovoltaic Properties of Low Band Gap π-Cojugated Polymer Based on 4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole (4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole을 기본으로 한 고분자의 합성 및 광전변환 특성)

  • Shin, Woong;You, Hyeri;Park, Jeong Bae;Park, Sang Jun;Jeong, Mi Seon;Moon, Myung-Jun;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.137-141
    • /
    • 2010
  • Poly [4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) was synthesized by the Heck coupling reaction between 4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole and 1,4-bis(dodecyloxy)-2,5-divinylbenzene. The maximum absorption and band gap of PPVTBT were 550 nm and 1.74 eV, respectively. The HOMO and LUMO energy level of PPVTBT were -5.24 eV and -3.50 eV, respectively. The photovoltaic device based on the blend of PPVTBT and (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-$C_{61}$ (PCBM) (1 : 6 by weight ratio) was fabricated. The efficiency of device was 0.16%. The short circuit current density (Jsc), fill factor (FF) and open-circuit voltage (Voc) of the device was $0.74mA/cm^{2}$, 31% and 0.71 V, respectively, under AM 1.5 G and 1 sun condition ($100mA/cm^{2}$).

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.