• Title/Summary/Keyword: Organic nanowires

Search Result 52, Processing Time 0.015 seconds

Suppressed Sheet Resistance of Ag Nanostructure Films by O2 Plasma Treatment (O2 플라즈마 처리를 통한 Ag 나노구조체 필름의 면저항 저감)

  • Kim, Wonkyung;Roh, Jong Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.37-41
    • /
    • 2019
  • Sheet resistance reduction in the Ag nanowire (NW) coated films is accomplished with slight improvement of optical properties for the application of transparent conducting electrodes by using $O_2$ plasma treatment. The sheet resistance was optimized after 30 seconds $O_2$ plasma treatment, showing the 27 % of maximum decrease of sheet resistance. It is found that the $O_2$ plasma treatment get rid of the residual organic materials at the junction of Ag NWs. However, the Ag NWs may be also snapped by the excessive $O_2$ plasma treatment can showing the collapses of Ag NWs networks. Furthermore, the optical properties such as optical transmittance and haze were monotonically improved with the $O_2$ plasma treatment time until 90 seconds.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.