• 제목/요약/키워드: Organic matter production

검색결과 789건 처리시간 0.023초

아산호의 성층과 퇴적층 유기물 특성이 메탄 발생에 미치는 영향에 관한 연구 (Study on the Effects of Stratification and Sediment Organic Matter Characteristics on Methane Production in Asan Lake)

  • 이선렬;오해성;최정현
    • 한국물환경학회지
    • /
    • 제40권5호
    • /
    • pp.215-228
    • /
    • 2024
  • Lakes are one of major sources of methane gas due to anaerobic decomposition of organic matter in sediments. Since methane released from lakes is a greenhouse gas, it is necessary to investigate factors affecting methane production of lakes. This study conducted field and incubation experiments in Lake Asan in August and October to determine effects of thermal stratification and sediment organic matter characteristics on methane production. Field experiments measured temperature and dissolved oxygen to determine the formation of thermal stratification of lakes. Methane and organic matter characteristics were analyzed using gas chromatography, Total Organic Carbon (TOC) analyzers, and fluorescence spectroscopy. Incubation experiments under anaerobic conditions used sediment and water samples from the same site. Field results showed higher methane fluxes in August and increased Dissolved Organic Carbon (DOC) concentration closer to Asan Bay seawall. Elevated methane fluxes and DOC concentration resulted from intensified anaerobic decomposition formed by thermal stratification. Incubation results indicated that sediment organic matter characteristics influenced methane flux between sites. Statistical analysis revealed that thermal stratification could be a primary factor affecting methane production of lakes. Characteristics of sediment organic matter with respect to quantity and quality could be factors influencing methane production of lakes. Results of this study can serve as fundamental data for predicting methane emissions from lakes due to climate change and for mitigating lake's contributions to global warming.

유기물(有機物)의 시용(施用)이 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) (Effects of Organic Materials on Soil Chemical Properties)

  • 오왕근
    • 한국토양비료학회지
    • /
    • 제11권3호
    • /
    • pp.161-174
    • /
    • 1979
  • A review was made on the effect of organic matter application on the chemical characteristics of soils such as pH, solubilities of minerals, and cation exchange capacity mainly at flooded rice soils. The review can be summarized as follows: 1. Application of organic material such as rice straw and compost in flooded rice soil leads to a temporary lowering of soil pH at the earlier stage of soil reduction, due to the production of various organic acids and carbonic acid. This temporary lowered pH is replaced with the production of alkaline substances such as ammonia as the reduction of soil proceeds. 2. Incorporation of organic materials intensifies the ferrous iron, dissolving various minerals, virtually to the increase in electrical conductivity of soils. 3. Organic materials also play an important role in dissolving soil minerals through the production of various chelating agents. 4. Application of soil organic matter significantly increases cation exchange capacity of soils. 5. Continuous application of rice straw or compost leads to the increase in soil organic matter content to some extent, up to the level of equilibrium. In soils low in organic matter the equilibrium level is attained with five years continuous application of compost. 6. The manner of chemical fertilizer application influences the accumulation of organic matter applied in soils. Low levels of fertilization lowers the accumulation while high levels of fertilization accerelates the accumulation.

  • PDF

Emission characteristic of ammonia in cement mortars using different sand from area of production

  • Jang, Hongseok;So, Hyoungseok;So, Seungyoung
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.241-246
    • /
    • 2016
  • This paper discusses the influence of organic matter contained in aggregate on the emission characteristic of ammonia ($NH_3$) from cement mortar. $NH_3$ can be released to indoor-outdoor environment through diffusion in mortar (or concrete) and have resulted in the increasing air pollution, and especially well known as a harmful gas for the human body. The concentration of $NH_3$ released from cement concrete was then compared to the contents of organic matter contained in the aggregate. The result indicates that the contents of organic matter in the aggregate significantly differ with types of aggregate from different areas of production. The organic matter becomes organic nitrogen through the process of microbial breakdown for a certain period and pure ammonium ion ($NH_4{^+}$) is produced from the organic nitrogen. The $NH_4{^+}$ was reacted with alkaline elements in the cement and released as $NH_3$ from cement concrete through a volatile process. The released $NH_3$ was proportional to the contents of $NH_4{^+}$ adsorbed in the aggregate from different areas of production and the concentrations of $NH_3$ emission from cement mortar according to the aggregate differ by more than 4 times.

전기분해공정을 이용한 유기물저감 및 수소 생산을 위한 최적 조건에 관한 연구 (A Study on Optimal Conditions for Organic Matter Reduction and Hydrogen Production Using Electrolysis Process)

  • 안정윤;노연희;장순웅
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.546-552
    • /
    • 2020
  • In this study, optimization research was conducted through statistical analysis with the aim of maximizing the efficiency of organic matter reduction and hydrogen production by applying electrolysis process at sewage treatment plant. Statistical analysis and optimal operating conditions of organic matter removal efficiency and H2 generation, which varied with various conditions in the electrolysis process, were derived using response surface methodology. As a result, 1,268 μS/cm of conductivity, 350 A current, and pH 3.2 was found to be the optimum condition to reach the desired value as 38% of organic matter reduction and 2.58 L/min of H2 production. The experiment also determined that the optimization study was reliable. Base on this study, it was confirmed that the removal of organic matter and hydrogen production could be stably by applying the electrolysis process in the sewage treatment plant.

초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거 (Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process)

  • 이홍주;김수한
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.

의암호 유역에서 발생하는 자체생산 유기물 저감방안에 관한 연구 (The Study on Decline Plan of Primary Production Organic Matter of Uiam Lake Basin)

  • 허인량;이건호;함광준;최지용;정의호
    • 한국환경보건학회지
    • /
    • 제30권1호
    • /
    • pp.50-58
    • /
    • 2004
  • The present study was designed to evaluate primary production organic matter in basin of lake around by execution of total maximum daily loading. BOD influent loading of Uiam lake was 2,819 kg/day, which was less then 28.3 percent, total effuluent loading as 3,619 kg/day, in comparision with BOD, total nitrogen influent loading was 4,681 kg/day, which was less then 10.0 percent, total effuluent loading as 5,150 kg/day. But in case of total phosphors influent loading was 73.3 kg/day, which was more then 34.2 percent, total run off loading as 48.3 kg/day. The result of survey reduction plan of primary production organic matter in basin of lake around which objectives of abstract is as follows. First plan was reduction of primary production organic matter by moving the outlet of municipal wastewater treatment center from present place to lake downstream. Secondary plan was improvement by diffusion type of outlet municipal wastewater treatment center. The third plan was reduction of environmental impact by passing and storing of municipal wastewater. Finally plan was decline water surface level which was present hydrouric retention time was reduction from 7.6 day to 6.0 day per meter.

Development of Nondestructive Grouping System for Soil Organic Matter Using VIS and NIR Spectral Reflectance

  • Sung J.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제6권1호
    • /
    • pp.15-21
    • /
    • 2005
  • This study was conducted to develop a nondestructive grouping system for soil organic matter using visible (VIS) and near infrared (NIR) spectroscopic method. The artificial light was irradiated on the cut soil surface at 15 to 20 cm depths to reduce the errors of light at open field. The reflectance energy from the cut soil surface was measured to group the soil organic matter using VIS/NIR light sensor with narrow band pass filter. From reflectance spectra of soil samples, the sensitive wavelengths for measuring the soil organic matter were selected and compared to previous research results. The grouping system for soil organic matter consisted of light sensor with band pass filter measuring the reflectance energy of the cut soil surface, global positing system (GPS), analog-to-digital (AD) converter, computer and operating software. The regression models to predict the soil organic matter were developed and evaluated. From field test, the accuracies of the developed light sensor system were 81.3% for five-stage grouping of the soil organic matters and 91.0% for three-stages grouping of the soil organic matters, respectively. It could be possible to support the decision making for variable rate applications with the developed grouping system for soil organic matter in precision agriculture.

  • PDF

모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가 (Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system)

  • 황유훈;양필제;송지민;홍민지;최창형;고석오;김도군
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.

유기재배 조건에서의 방목초지 생산성에 관한 연구 (Productivities of Grazing Pasture in Organic Production System)

  • 윤세형;정의수;임영철
    • 한국초지조사료학회지
    • /
    • 제24권2호
    • /
    • pp.171-176
    • /
    • 2004
  • 유기조사료 생산을 위한 방목초지의 역할을 구명하기 위해 2000년부터 2002년까지 경기도 수원시 소재 축산기술연구소에서 수행되었다. 유기재배에 따른 목초의 생산성을 구명하기 위해 대조구(표준관리), 친환경구, 유기구를 처리구로 하여 수행되었다. 그 결과는 다음과 같다. 1. 건물수량은 대조구, 친환경구, 유기구의 순으로 많았으나, 유기구와 대조구의 수량차이가 14% 정도로 작았다. 2. 사료가치와 식생에서는 큰 차이가 없었다. 위 시험의 결과 방목초지는 유기적 재배에서도 양호한 상태로 유지되어 초지는 유기조사료 생산에 적합한 작목으로 판명되었다.

의암호에 유입되는 오염물질 관리를 통한 호소 수질개선 방안 (Measures to improve water quality of Lake Euiam by controlling the incoming pollutants to the lake)

  • 황환민;이건호;김미연;김동진;김영관
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.783-790
    • /
    • 2011
  • The purpose of this study was to suggest the alternative measures to properly manage the water quality of Lake Euiam, Chuncheon. Current pollution level of Gongji stream (influent to Lake Euiam) and sources of contamination in Lake Euiam were investigated. Particle size, organic matter and nutrient contents, heavy metals were analyzed for sediment samples taken from lower region of Gongji stream. Average organic matter content of nine sediment samples was 5.7%, and for nitrogen and phosphorus it was 750 mg/kg and 977mg/kg, respectively. Heavy metals including aluminum, iron, manganese and zinc were measured, whereas Cd and As were not detected. Effluent from Chuncheon Wastewater Treatment Plant appeared to be one of the main cause of organic matter and nutrients level in Lake Euiam. Inhibition of primary production and consequent reduction of organic matter content within the Lake should be a key measure to protect the water quality of Lake Euiam. Preventive measures to reduce the level of nutrients in wastewater treatment effluent were found necessary.