• Title/Summary/Keyword: Organic light-emitting diodes

Search Result 749, Processing Time 0.043 seconds

Electronic Structure of the Tris(8-quinolinolato)aluminum (III) ($Alq_3$) / Ba Interfaces and Light Out-coupling Characteristics of Organic Light-emitting Diodes Based on these Interfaces

  • Kwon, Jae-Wook;Lim, Jong-Tae;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.834-836
    • /
    • 2009
  • We investigated the device performance for organic light-emitting characteristics based on the electron-injecting interfacial characteristics of Ba deposited on tris(8-quinolinolato)aluminum (III) ($Alq_3$) with a change of a Ba coverage. The device performance of organic light-emitting diodes with Ba coverage of 1 nm significantly improved by the lowering of the electron-injecting barrier height that was induced by electronic charge transfer. However, the device with Ba coverage above 1 nm showed poor device performance. The spectroscopic results indicated that the $Alq_3$ molecules started to decompose by the reaction between Ba and the phenoxide moiety of the molecule.

  • PDF

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.

Emission zone in organic light-emitting diodes(OLEDs)

  • Noh, Sok-Won;Lim, Sung-Taek;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.127-128
    • /
    • 2000
  • Organic light-emitting diodes(OLEDs) are constructed using multilayer organic thin films. The hole-transport layer is PVK and the emitting material is rubrene and $Alq_3$. The emitting layer is doped with rubrene partially. As the partially-doped layer migrate from the interface PVK/emitting layer, the emission peak of rubrene decrease and diminish. By comparing with the previous reports, we propose the zero-field hole injection barrier at ITO/PVK interface and hole-trapping effect of rubrene in host materials as predominant factor to determine the emission zone.

  • PDF

Electrical, optical, and thermal properties of AZO co-sputtered ITO electrode for organic light emitting diodes

  • Park, Young-Seok;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.416-419
    • /
    • 2008
  • In this study, we report on the characteristics of Aldoped ZnO (AZO) co-sputtered indium tin oxide (ITO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature for organic light emitting diodes (OLEDs). The electrical and optical properties of co-sputtered IAZTO electrode were critically dependent on the DC power of AZO. Furthermore, the characteristics of co-sputtered IAZTO electrode were influenced by rapid thermal annealing temperature.

  • PDF

Development of Fluorescent or Phosphorescent Materials for Non-Dopant Red Organic Light-Emitting Diodes

  • Chen, Chin-Ti
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1133-1137
    • /
    • 2005
  • In this paper, a renovated approach in the fabrication of red organic light-emitting diodes (OLEDs) is described. The hard-to-control doping process required for dopant-based red OLEDs can be avoided due to the novel red fluorophores that are not concentration quenching in solid state. Doping is in general a must for phosphorescence OLEDs because of the triplet-triplet annihilation, a common problem for phosphorophore dopants. However, we have recently found that extraordinary red iridium complex showing relatively short emission lifetime render the non-doped phosphorescence red OLED possible.

  • PDF

Characteristics Investigation of Organic Light Emitting Diodes Using Numerical Device Simulation

  • Lee, Yang-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.28-31
    • /
    • 2003
  • We have investigated the electrical characteristics of the organic light emitting diodes (OLEDs) using the numerical device simulation. The current-voltage characteristics, the charge carrier concentrations, and the recombination rate profiles are presented. The simulation results of the effects of the various device parameters on the device characteristics are discussed.

  • PDF

High efficiency organic light emitting-diodes (OLEDs) using multilayer transparent electrodes

  • Yun, Chang-Hun;Cho, Hyun-Su;Yoo, Seung-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.823-825
    • /
    • 2009
  • We present multilayer transparent electrodes (MTEs) that resulted in organic light-emitting diodes (OLEDs) with the 90 % higher forward luminous efficiency and 30% higher external quantum efficiency (EQE) than conventional ITO based devices respectively. Optimization method of such MTE structure is investigated in consideration of both injection and optical structure.

  • PDF

The fabrication of White Organic Light-Emitting Diodes using Two-Wavelength (Two-Wavelength에 의한 백색 유기 발광 소자 제작)

  • 김중연;최성진;조재영;강명구;신선호;주성후;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.25-28
    • /
    • 2002
  • We have been fabricated white organic light emitting diode with two-wavelength ard mixing blue emit in DPVBi (4, 4-bis(2, 2-diphenylvinyl)-1, 1 -biphenyl)layer and yellow emit in rubrene (5, 6, 11, 12-tetraphenylnaphthacene)as emitting layer which are controlled with thickness. This device emits white light emitting in CIE (0.29, 0.33), 1000cd/$m^2$ at DC 18V.

  • PDF

Electrical Properties of Organic Light-emitting Diodes Using TCNQ Molecules (TCNQ 분자를 이용한 유기 발광 소자의 전기적 특성)

  • Na, Su-Hwan;Kim, Tae-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.896-900
    • /
    • 2010
  • Electrical properties of organic light-emitting diodes were studied in a device with 7,7,8,8-tetracyano-quinodimethane (TCNQ) to see how the TCNQ affects on the device performance. Since the TCNQ has a high electron affinity, it is used for a charge-transport and injection layer. We have made a reference device in a structure of ITO(170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm). And two types of devices were manufactured. One type of device is the one made by doping 5 and 10 vol% of TCNQ to N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) layer. And the other type is the one made with TCNQ layer inserted in between the ITO anode and TPD organic layer. Organic layers were formed by thermal evaporation at a pressure of $10^{-6}$ torr. It was found that for the TCNQ doped devices, turn-on voltage of the device was reduced by about 20 % and the current efficiency was improved by about three times near 6 V. And for devices with TCNQ layer inserted in between the ITO anode and TPD layer, it was found that the current efficiency was improved by more than three times even though there was not much change in turn-on voltage.

Characteristics of organic light-emitting diodes with AI cathode prepared by ITS system (TTS로 성막한 Al 캐소드를 가진 유기발광소자의 특성 분석)

  • Moon, Jong-Min;Lee, Sang-Hyun;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.74-75
    • /
    • 2007
  • We report on the characteristics of organic light-emitting diodes with Al cathode deposited by specially designed twin target sputter(TTS) system. It was found that the Al cathode films grown by TTS system were amorphous structure with nanocrystallines due to low substrate temperature during sputtering process. Effective confinement of high-density plasma between two Al targets lead to low temperature sputtering process on organic layer. Moreover, organic light-emitting diodes with Al cathode deposited by TTS system exhibited low leakage current density of $4{\times}10^{-6}\;mA/cm2$ at -6 V indicating plasma damage due to bombardment of energetic particles such as ions and $\gamma$-electrons was effectively restricted in the ITS system. Sputtering method using ITS system is expected to be applied in organic electronics and flexible displays due to its low temperature and plasma damage free deposition process.

  • PDF