• Title/Summary/Keyword: Organic impurities

Search Result 96, Processing Time 0.024 seconds

테레프탈산 제조공정 중의 유기불순물 분석 (Analysis of Organic Impurities in Terephthalic Acid Manufacturing Process)

  • 김동범;차운오;곽규대
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1204-1208
    • /
    • 1996
  • 파라자일렌(p-xylene)을 산화반응시켜 테레프탈산(terephthatic acid)을 제조하는 과정 중에 발생하는 주요 유기불순물을 효과적으로 분석하는 방법을 수립하였다. 이 제조공정 중에 발생하는 유기불순물은 매우 다양하나, 여기에서는 주로 benzoic acid, p-toluic acid, p-tolualdehyde, 4-carboxybenzaldehyde, phthalic acid, isophthalic acid, trimellitic acid와 4-hydroxymethyl benzoic acid 등의 유기불순물을 분석하는데 촛점을 맞추었다. 이 유기물들은 공정 중의 모액이나 고체상태의 테레프탈산 입자에 존재하는데, 이들을 동시에 분석하기 위해 99% bis(trimethylsilyl)trifluoroacetamide와 1% trimethylchlorosilane의 내부표준용액과 pyridine의 혼합용액내에서 trimethylsilylation으로 시료를 전처리하고 gas chromatography를 이용하여 분석한 결과 상기한 유기물이 모두 성공적으로 분리되어 50분 이내에 정량분석할 수 있었다.

  • PDF

Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

  • Yoonhee Lee;Yong Jin Cho
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2079-2091
    • /
    • 2024
  • In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.

Mass Balance Method for Purity Assessment of Organic Reference Materials: for Thermolabile Materials with LC-UV Method

  • Lee, Joonhee;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3275-3279
    • /
    • 2014
  • A mass balance method for purity assessment of thermolabile organic reference materials was established by combining several techniques, including liquid chromatography with UV/VIS detector (LC-UV), Karl-Fischer (K-F) Coulometry, and thermal gravimetric analysis (TGA). This method was applied to three fluoroquinolones like enrofloxacin, norfloxacin and ciprofloxacin. LC-UV was used to analyze structurally related organic impurities based on UV/VIS absorbance spectra obtained in combination with LC separation. For all three organic reference materials, the UV/VIS spectra of the separated impurities were similar to that of the major component of the corresponding materials. This indicates that the impurities are structurally related to the respective reference material sharing common chromophores. Impurities could be quantified by comparing their absorbances at the wavelength of maximum absorbance (${\lambda}_{max}$). The water contents of the reference materials were measured by K-F Coulometry by an oven-drying method. The total inorganic impurities contents were assayed from ash residues in TGA analysis with using air as a reagent gas. The final purities estimated from results of those analytical techniques were assigned as ($99.91{\pm}0.06$), ($97.09{\pm}0.17$) and ($91.85{\pm}0.17$)% (kg/kg) for enrofloxacin, norfloxacin and ciprofloxacin, respectively. The assigned final purities would be applied to the reference materials which will be used as calibrators for the certification of those compounds in matrix CRMs as starting points for the traceability of their certified values to SI units.

폐 LCD 유리 재활용을 위한 용매 별 유기물 제거 효율에 대한 연구 (A Study of Organic Impurity Removal Efficiency for Waste LCD Touch Panel Glass by Solvents Types)

  • 강유빈;최진주;박재량;이찬기
    • 자원리싸이클링
    • /
    • 제29권6호
    • /
    • pp.57-64
    • /
    • 2020
  • 본 연구에서는 LCD 터치 패널 유리의 재활용을 위해 기계적 방법과 화학적 용해법을 혼용하여 OCA 및 유기 불순물을 제거하는 실험을 진행하였다. 터치 패널의 기계적 파분쇄를 위해 cut mill과 oscillation mill을 이용하였으며, OCA와 유기 불순물의 제거를 위해 물, 에탄올, 디클로로메탄을 이용하여 터치 패널 파쇄물을 세정하였다. 세정 이후 TGA를 통해 유기 불순물의 제거 효율을 평가한 결과 디클로로메탄 단일 용매를 사용한 경우 세정 효과가 가장 뛰어났으며, 세정 온도가 증가함에 따라 유기 불순물의 제거 효과가 증가함을 확인하였다. 제타 전위 측정을 통해 터치 패널 유리 파쇄물의 용매 내 분산도를 평가한 결과, 세정 효과가 가장 낮은 물의 제타 전위 절대값이 타용매에 비해 낮았으며, 유기물의 제거 효과는 화학적인 용해 특성뿐 아니라 용매 내 물리적인 분산 특성에 의해서도 영향을 받을 수 있음을 확인하였다.

Effect of Organic Solvents on the Electrical Properties of a Neat Epoxy Resin System

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.89-92
    • /
    • 2012
  • The effect of organic impurities on the electrical properties of a neat epoxy resin was studied. 0.05, 0.5 and 1.0 phr of iso-propyl alcohol (IPA) and methylene chloride (MC) mixture (50/50 wt%) were used as impurities. The current density, volume resistance and impedance characteristics of the epoxy/IPA/MC systems were measured with a high voltage source meter and broadband dielectric spectroscopy. Glass transition temperature (Tg) was measured by a differential scanning calorimetry (DSC) and it was found that Tg decreased slightly with increasing IPA/MC content. It was also found that Tg values of the epoxy systems with various IPA/MC contents were closely related to the current density, volume resistance and impedance characteristics.

나노복합재료에서의 유기용매의 영향 (Effect on Organic Solvent of Fabrication Processing in Epoxy Nanocomposites)

  • 박재준;안준호;황병준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.206-206
    • /
    • 2007
  • The nano-technology becomes a key technology in every field and it wasn't specialized any more. But nano-technology didn't applied every fields actively. Because It is difficult to fabricate the nanocomposites using nano-partie without aggregation of nano-size particles. So many researcher used organic solvent for dispersion in polymer nanocomposites. But organic solvent affected the electrical, mechanical, and thermal properties in the sample. We aimed this point that investigated the effect of organic solvent in the sample by evaporated temperature(60, 80, $100^{\circ}C$). In results, nano-particles affected to electrical properties of the sample due to decrease the energy gap. And at 120 Hz, impedance value of samples by varied evaporated temperature was decreased only at $60^{\circ}C$ dramatically. It's means that organic solvent role to impurities and decreased the activation energy. And these impurities contributed to the conductivity in the sample.

  • PDF

순환회분식 광촉매시스템의 영향인자 연구: 광촉매 주입량, 용존산소, 체류시간,전자포획 첨가금속 (Factors influencing a Photocatalytic System in Circulating Batch Mode: Photocatalyst Dosage, DO, Retention Time and Metal Impurities)

  • 김일규
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.49-58
    • /
    • 2013
  • A selected halogenated organic contaminant, monochlorophenol was successfully degraded by photocatalytic reaction in a circulating batch system. The photocatalytic degradation in most cases follows first-order kinetics. The photocatalytic reaction rate increased in the $TiO_2$ dosage range of 0.1 g/L to 0.4 g/L, then decreased with further increase of the dosage. Also the degradation rate increased over the range of the retention time from 0.49 min. to 0.94 min., then decreased with further increase of the retention time in the circulating batch reactor. The photocatalytic activity was enhanced by addition of metal impurities, platinum(Pt) and palladium(Pd) onto the photocatalysts. The photocatalytic degradation rate increased with the increase of Pt and Pd in the content range of 0 to 2wt %, then decreased with further increase of the metal contents. Therefore the metal loading to $TiO_2$ influence the degradation rate of a halogenated organic compound by acting as electron traps, consequently reducing the electron/positive hole pair recombination rate.

방향족 탄화수소 할로겐 유도체의 광촉매-광산화 (Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution)

  • 김삼혁;권규혁;정오진
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF

재생골재의 도로적용을 위한 이물질 정량화 연구 (An Impurity Quantitative Study for Pavement Application in Recycled Waste Aggregates)

  • 박준영;조윤호;임남웅
    • 한국도로학회논문집
    • /
    • 제7권1호
    • /
    • pp.21-29
    • /
    • 2005
  • 건설폐기물의 재활용방법 중 하나는 폐콘크리트 재생골재를 도로포장재료로 활용하는 것이다. 하지만 재생골재에 대한 많은 연구와 기술개발에도 불구하고 생산공정에 포함된 이물질 때문에 실제 도로포장재료로의 적용은 미비한 실정이다. 본 연구에서는 재생골재내에 포함된 이물질의 특성에 따라 무기이물질과 유기이물질로 구분하였으며 , 각 이물질이 포장 공용성에 미치는 영향을 제시하였다. 또한 재생골재내에 포함된 무기이물질 함유량과 압축강도와의 관계, 유기이물질 함유량과 수정 CBR과의 상관관계를 통하여 도로포장층인 린콘크리트 기층과 보조기층에 적용 가능한 이물질 함량기준을 제시하였다. 린콘크리트 기층에는 무기이물질 함유량 질량비 10% 이하, 입상재료 보조기층에는 유기이물질 함유량 부피비 2% 이하일 때 재생골재를 포장에 적용 가능한 것으로 나타났다.

  • PDF

Purity Assessment of Organic Reference Materials with a Mass Balance Method: A Case Study of Endosulfan-II

  • Kim, Seung-Hyun;Lee, Joonhee;Ahn, Seonghee;Song, Young-Sin;Kim, Dong-Kyum;Kim, Byungjoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.531-538
    • /
    • 2013
  • A mass balance method established in this laboratory was applied to determine the purity of an endosulfan-II pure substance. Gas chromatography-flame ionization detector (GC-FID) was used to measure organic impurities. Total of 10 structurally related organic impurities were detected by GC-FID in the material. Water content was determined to be 0.187% by Karl-Fischer (K-F) coulometry with an oven-drying method. Non-volatile residual impurities was not detected by Thermal gravimetric analysis (TGA) within the detection limit of 0.04% (0.7 ${\mu}g$ in absolute amount). Residual solvents within the substance were determined to be 0.007% in the Endosulfan-II pure substance by running GC-FID after dissolving it with two solvents. The purity of the endosulfan-II was finally assigned to be ($99.17{\pm}0.14$)%. Details of the mass balance method including interpretation and evaluating uncertainties of results from each individual methods and the finally assayed purity were also described.