• Title/Summary/Keyword: Organic germanium

Search Result 44, Processing Time 0.022 seconds

Preparation of Organic Germanium by Yeast Cell (효모를 이용한 유기게르마늄의 제조)

  • 송원종;이상철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.87-90
    • /
    • 1995
  • A process of organically bound germanium preparation was developed for healthy food using inorganic germanium adapted Saccharomyces cerevisiae. Adaptations of Saccharomyces cerevisiae against inorganic germanium were successively carried out through stepwise increase of GeO$_{2}$ concentration in order to produce high quantities of germanium bound yeast. Productivity of yeast and quantities of germanium in yeast were obtained 70.2 g/l and 9780 ppm, repectively, when adapted yeast and fed batch culture were used. Germanium taken-up yeast is to be organically bound germanium by evidence of no difference of germanium content after dialysis.

  • PDF

Anti-inflammatory and Anti-cancer Effects of Agricultural Produce Grown with Organic Germanium-enriched Water (유기 게르마늄 농축수로 재배한 농산물의 항염 및 함암효과)

  • Lee, Myeong-Seon
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • The study was conducted to identify the anti-inflammatory and anti-cancer effects in sprouts of mouse-eyed bean (Rhynchosia nulubilis), ginseng (Panax ginseng), perilla (Perilla frutescens), broccoli (Brassica oleracea var. italica), and lettuce (Lactuca sativa) grown with organic germanium concentrate. Western blot analysis was performed to assess the anti-inflammatory activity of the extract. All extracts exhibited noticeable anti-oxidant activity, indicating a significant correlation between the germanium content and anti-oxidant activity (p<0.05). In particular, rat-eyed bean sprouts with the highest germanium content showed significant anti-inflammatory activity (p<0.05) by significantly inhibiting the expression of the inflammatory complexes, NLRP3, cytokines IL-1β and caspase-1. Ginseng and broccoli sprouts showed strong anti-cancer properties and had high anti-oxidant effects (p<0.001). Germanium-concentrated water allows the mass production of agricultural products containing high concentrations of organic germanium. Agricultural produce grown with germanium concentrate add organic germanium to various physiological active ingredients, increasing the anti-oxidant and anti-cancer effects. These results strongly suggest that agricultural products containing high germanium concentrations can be used as novel health supplements to improve health.

Anti-inflammatory activity of organic germanium

  • Yoon, Mi-Yun;Cho, Nam-Young;Kim, Kyung-Won;Lee, Ji-Yun;Kim, Chang-Jong;Sim, Sang-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.191.1-191.1
    • /
    • 2003
  • Germanium is present in all living plant and animal matter in micro-trace quantities. Clinical trials and use in private practices for more than a decade have demonstrated germanium's efficacy in treating a wide range of serious afflications. including cancer, arthritis and senile osteoporosis. To investigate anti-inflammatory activity of organic germanium, we measured the effect of organic germanium on histamine release, (omitted)

  • PDF

Study on Activities of Antioxidant and Anticancer of Germanium-fortified Tricholoma matsutake Myceliumm (게르마늄 강화 송이균사체의 항산화 및 항암 활성에 관한 연구)

  • Kim, Hae-Ja;Kim, Wan-Gyeom;Cho, Hwa-Eun;Choi, Yun-Hee;Lee, Ki-Nam;Chong, Myong-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.473-479
    • /
    • 2009
  • The purpose of this study was evaluated physiological activity effect of organic germanium in culture broth of germanium-fortified Tricholoma matsutake mycelium and germanium-fortified yeast. Proliferation Tricholoma matsutake mycelium and yeast was inhibited by addition of germanium. Contents of organic germanium in Tricholoma matsutake mycelium and yeast was increased in dose-dependent manner. And low concentration(1,000 ppm) of germanium in mycelium was almost changed organic germanium. In the result of antioxidant activity as SOD-like activity, contents of total polyphenol compound and electron donating ability, activity of germanium-fortified Tricholoma matsutake mycelium was higher than that of germanium-fortified yeast. To evaluate of antitumor effects in vitro, we examined nitric oxide production of Raw 264,7 cell and cytotoxicity of HT1080 cell by MTT assay. Nitric oxide production of germanium-fortified Tricholoma matsutake mycelium was shown low level in low concentration(1,000 ppm) than other groups. The anticancer effect of germanium-fortified Tricholoma matsutake mycelium on HT 1080 cell was indicated a strong inhibitory effect in low concentration(1,000 ppm). These results suggest that organic germanium in culture broth of germanium-fortified Tricholoma matsutake mycelium has valuable physiological activities as antioxidant and anticancer effect, and it was higher than that of germanium-fortified yeast.

Oral Repeated-dose Toxicity Studies Especially in the Liver and Kidney of Rats Administered with Organic Germanium-fortified Yeasts

  • Lee, Sung-Hee;Oh, Kyeong-Nam;Rho, Sook-Nyung;Lee, Bok-Hee;Lee, Hyun-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2006
  • The object of this study was to examine whether the germanium fortified yeast administered to SD rat is accumulated in the liver and kidney. The administration doses were within 2,000 mg/kg which is the level of NOAEL (no observed adverse effect level) proved through the previous study of single/consecutive oral toxicity test. There were no significant clinical symptoms and mortality following the administration of organic germanium-fortified yeast (0, 500, 1,000, 2,000 mg/kg) during the whole test period, and also no difference in the consumed amount of feed and water for each group. No significant abnormalities of hematology and blood chemistry parameters were found in all groups of organic germanium-fortified yeast (0, 500, 1,000, 2,000 mg/kg). The amount of germanium accumulated in liver and kidney was 0 g/kg by ICP-AES method in the group of organic germanium-fortified yeast. In the positive control group of $GeO_2$ (150 mg/kg), the amount of accumulation was shown to 3135.0 and 4277.2 g/kg in each female and male kidney and 1044.3 and 2135.8 g/kg in each female and male liver, respectively. Organic germanium-fortified yeast, a biosynthetic product resulting from putting germanium into yeast, did not show any clinical symptoms, blood chemical significance, and residues in kidney and liver. It could be inferred that the non-toxic amount of organic germanium-fortified yeast was up to 2,000 mg/kg.

Development of Ganoderma lucidum on Soft and Hard Wood Logs and Determination of Organic Germanium and Ganoderic Acid Content of the Fruiting Body Produced (침엽수와 활엽수 골목에서 Ganoderma lucidum의 발생과 자실체의 Organic Germanium과 Ganoderic Acid 함량)

  • Sukarno, Nampiah;Aini, Al-Azhariati;Sumarna, Vivi;Rohaeti, Eti;Darusman, Latifah K.
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2004
  • The objectives of this experiment were to study the growth and development of fruiting body of the two Ganoderma lucidum isolates on log of the soft wood Paraserianthes falcataria and the hard wood Shorea sp., and determination of organic germanium and crude ganoderic acid content of the fruiting body produced. The two Ganoderma lucidum isolates used were one Indonesian native (Indonesia isolate) and another isolate was purchased from Fungi Perfecti, USA (commercial isolate). The development and quality of the primordium and fruiting body of the mushroom, in general, were influenced by the isolates used. The types of wood, however, had no effect on the quality of the primordium and fruiting body produced. The Indonesian isolate produced better fruiting body compared to that of the commercial isolate. The development of fruiting body from primordium, however, was low for the two isolates tested. In general, only about one third of the primordium developed further into mature fruiting bodies, except for the commercial isolate grown on the soft wood medium in which more than 60% of the primordium developed into mature fruiting body. Apart from producing normal fruiting body, the commercial isolate also produced an abnormal one, which had a white mature pileus, whereas the normal one was brownish red. The organic germanium concentration of the fruiting body produced on the hard wood, in general, was higher than that of grown on the soft wood. The fruiting body from commercial isolate had higher organic germanium concentration compared to that of Indonesian isolate in both wood types. The two isolates used, however, had almost the same value of the crude ganoderic acid concentration in both types of wood tested. The Indonesian isolate had higher total yield of both organic germanium and crude ganoderic acid of the fruiting body produced compared to that of the commercial isolate.

  • PDF

Effect of Germanium Treatment on Growth and Production of Organic Germanium in Oplopanax elatus (게르마늄 처리에 따른 땃두릅나무의 생육 증진 효과 및 유기게르마늄 생산)

  • Kim, Hee Young;Seong, Eun Soo;Yoo, Ji Hye;Choi, Jae Hoo;Kang, Byeong Ju;Jeon, Mi Ran;Kim, Myong Jo;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.214-221
    • /
    • 2016
  • Background: This study was conducted to investigate the effects of germanium treatment on the growth and organic germanium production in the roots of Oplopanax elatus plantlets. Methods and Results: O. elatus plantlets were cultured in Murashige and Skoog (MS) medium with different concentrations of germanium dioxide ($GeO_2$) to analyze optimum growth conditions. Exogenous treatment of $10mg/{\ell}\;GeO_2$ promoted growth and an increase in the contents of chlorophyll a, b and carotenoid in O. elatus. The germanium accumulation and production in roots of O. elatus plantlets treated with organic germanium reached the highest levels. The growth of the aerial and underground portion of O. elatus with organic germanium was greater than that of the control. The accumulation and production of organic germanium reached the highest level ($40.89{\mu}g/plantlet$) with the treatment of $50mg/{\ell}\;GeO_2$. Antioxidant activity measured by DPPH and ABTS assays also increased with the germanium treatment and improved the DPPH and ABTS radical activity by 200% compared with that in the control. In addition, the total phenol and flavonoid contents of the plantlets with a treatment of $50mg/{\ell}\;GeO_2$ were higher than in the control. Conclusions: Taken together, the growth of O. elatus was increased with the treatment of $50mg/{\ell}\;GeO_2$ germanium and the biological references improved, with increased antioxidant activity and organic germanium production.

Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors (Metal Organic Chemical Vapor Deposition법을 이용한 Germanium 전구체의 증착 특성 연구)

  • Kim, Sun-Hee;Kim, Bong-June;Kim, Do-Heyoung;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.302-306
    • /
    • 2008
  • Polycrystalline germanium (Ge) thin films were grown by metal organic chemical vapor deposition (MOCVD) using tetra-allyl germanium [$Ge(allyl)_4$], and germane ($GeH_4$) as precursors. Ge thin films were grown on a $TiN(50nm)/SiO_2/Si$ substrate by varying the growth conditions of the reactive gas ($H_2$), temperature ($300-700^{\circ}C$) and pressure (1-760Torr). $H_2$ gas helps to remove carbon from Ge film for a $Ge(allyl)_4$ precursor but not for a $GeH_4$ precursor. $Ge(allyl)_4$ exhibits island growth (VW mode) characteristics under conditions of 760Torr at $400-700^{\circ}C$, whereas $GeH_4$ shows a layer growth pattern (FM mode) under conditions of 5Torr at $400-700^{\circ}C$. The activation energies of the two precursors under optimized deposition conditions were 13.4 KJ/mol and 31.0 KJ/mol, respectively.

The Growth Inhibition against Gastric Cancer Cell in Germanium or Soybean Sprouts Cultured with Germanium (게르마늄 및 게르마늄 분말 용해수로 재배한 콩나물의 위암세포 성장억제 작용)

  • 김은정;이경임;박건영
    • Korean journal of food and cookery science
    • /
    • v.20 no.3
    • /
    • pp.287-291
    • /
    • 2004
  • The growth inhibitory effect of germanium, or soybean sprouts cultured with germanium, on cancer cells was determined in the cultured gastric cancer cell line, AGS. The growth of AGS was significantly inhibited by the addition of 0.01-1% organic germanium (Ge-132) and germanium stone powder in MTT cytotoxicity assays. The juice from germanium treated soybean sprouts (GTS) inhibited the growth of AGS gastric cancer cells by 78-88% at concentrations of 2.5 or 5${\mu}\ell$. The juice from Seomoktae GTS revealed an especially higher growth inhibitory effect than that from the control soybean sprouts (germanium non-treated soybean sprouts, GNTS) in AGS. The results suggest that soybean sprouts cultured with germanium may exert an anticancer effect against gastric cancer cells.

Characteristics of Absorption and Accumulation of Inorganic Germanium in Panax ginseng C. A. Meyer

  • Kang, Je-Yong;Park, Chan-Soo;Ko, Sung-Ryong;In, Kyo;Park, Chol-Soo;Lee, Dong-Yun;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2011
  • The characteristics of absorption and accumulation of inorganic germanium in Panax ginseng C. A. Meyer were examined. In 4-year-old P. ginseng, the germanium content of the field soil increased with increased amounts and frequencies of inorganic germanium application, while chemical components of the soil, such as available phosphate and exchangeable calcium, potassium, and magnesium, decreased with the increased inorganic germanium application. In the 4-year-old P. ginseng, the germanium content was highest in the rhizome and increased in the order of stem, leaf, lateral root, and main root, suggesting that inorganic germanium was absorbed from the root and translocated to the stem and leaf via the rhizome. As for changes in ginsenosides in 4-year-old P. ginseng rhizomes, the contents of ginsenosides $Rb_1$, $Rb_2$, Re, and Rf decreased as the germanium content in soil increased. Ginsenosides $Rb_1$, $Rb_2$, Rc, Re, and Rf in the main root also decreased with increasing germanium content in the main root. The results suggest that inorganic germanium treatment may increase organic germanium in harvested P. ginseng, thus enhancing the medicinal effi cacy of ginseng products.