• Title/Summary/Keyword: Organic field-effect transistor (OFET) CuPc

Search Result 17, Processing Time 0.024 seconds

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 계면에서의 온도 변화에 따른 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.934-937
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 구조에서의 온도 변화에 따른 계면에서의 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Yu, Seong-Mi;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.492-493
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine(CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Park, Yong-Pil;Lim, Eun-Ju;Iwamot, Mistumasa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.488-489
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

Electrical Properties of F16CuPC Single Layer FET and F16CuPc/CuPc Double Layer FET

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.174-177
    • /
    • 2007
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine ($F_{16}CuPC$) and copper phthalocyanine (CuPc) as an active layer. And we observed the surface morphology of the $F_{16}CuPC$ thin film. The $F_{16}CuPC$ thin film thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. And we also fabricated the $F_{16}CuPc/CuPc$ double layer FET and with different $F_{16}CuPc$ film thickness devices. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility. From the double layer FET devices, we observed the higher drain current more than single layer FET devices.

Fabrication and Electrical Properties of CuPc FET with Different Substrate Temperature (CuPc FET의 기판온도에 따른 제작 및 전기적 특성 연구)

  • Lee, Ho-Shik;Yang, Seong-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.548-551
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

  • PDF

Electrical Properties of CuPC FET with Varying Substrate Temperature (CuPC PET의 기판온도에 따른 전기적 특성 연구)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.110-114
    • /
    • 2009
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different substrate temperature. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET.

Surface Potential Properties of CuPc/Au Device with Different Substrate Temperature (CuPe/Au 소자의 기판 온도 변화에 따른 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Cheon, Min-Woo;Yu, Seong-Mi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.758-760
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF